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a b s t r a c t

The topological derivative measures the sensitivity of a given shape functional with respect to an infin-
itesimal singular domain perturbation. According to the literature, the topological derivative has been
fully developed for a wide range of one single physical phenomenon modeled by partial differential equa-
tions. In addition, the topological asymptotic analysis associated to multi-physics problems has been
reported in the literature only on the level of mathematical analysis of singularly perturbed geometrical
domains. In this work, we present the topological derivative in its closed form for the total potential
mechanical energy associated to a thermo-mechanical semi-coupled system, when a small circular inclu-
sion is introduced at an arbitrary point of the domain. In particular, we consider the linear elasticity sys-
tem (modeled by the Navier equation) coupled with the steady-state heat conduction problem (modeled
by the Laplace equation). The mechanical coupling term comes out from the thermal stress induced by
the temperature field. Since this term is non-local, we introduce a non-standard adjoint state, which
allows to obtain a closed form for the topological derivative. Finally, we provide a full mathematical jus-
tification for the derived formulas and develop precise estimates for the remainders of the topological
asymptotic expansion.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The topological derivative represents a first order asymptotic
correction term of a given shape functional with respect to a singu-
lar domain perturbation (Sokołowski and _Zochowski, 1999). It has
been applied in topology design optimization (Amstutz et al.,
2012), inverse problems (Hintermüller et al., 2012), image process-
ing (Hintermüller and Laurain, 2009), multi-scale constitutive
modeling (Giusti et al., 2009), fracture mechanic sensitivity analy-
sis (Van Goethem and Novotny, 2010) and damage evolution mod-
eling (Allaire et al., 2011). See also the book by Novotny and
Sokołowski (2013) and references therein.

For the sake of completeness, we recall the basic concepts on
topological sensitivity analysis. Let us consider a bounded domain
X � R2, which is subject to a non-smooth perturbation confined in
a small region xeðx̂Þ ¼ x̂þ ex of size e, as shown in Fig. 1. Here, x̂ is
an arbitrary point of X and x is a fixed bounded domain of R2.
Associated to the domain X we introduce a characteristic function
x # vðxÞ, x 2 R2, namely v ¼ 1X. Also, for the topologically per-
turbed domain we can define a characteristic function of the form

x # veðx̂; xÞ. If the perturbation is given by a perforation, the char-
acteristic function can be written as veðx̂Þ ¼ 1X � 1xeðx̂Þ

and the per-
forated domain is obtained now as Xe ¼ X nxe. Now, by assuming
the following topological asymptotic expansion of a given shape
functional wðveðx̂ÞÞ, associated to the topologically perturbed
domain,

wðveðx̂ÞÞ ¼ wðvÞ þ f ðeÞDTwðx̂Þ þ oðf ðeÞÞ; ð1Þ

the function x̂ # DTwðx̂Þ is called the topological derivative of w at x̂.
In (1), wðvÞ is the shape functional associated to the original (unper-
turbed) domain and f ðeÞ is a positive function such that f ðeÞ ! 0,
when e! 0. After rearranging (1) we have

wðveðx̂ÞÞ � wðvÞ
f ðeÞ ¼ DTwðx̂Þ þ

oðf ðeÞÞ
f ðeÞ : ð2Þ

The limit passage e! 0 in the above expression leads to

DTwðx̂Þ ¼ lim
e!0

wðveðx̂ÞÞ � wðvÞ
f ðeÞ : ð3Þ

Since we are dealing with singular domain perturbations, the shape
functionals wðveðx̂ÞÞ and wðvÞ are associated to topologically differ-
ent domains. Therefore, the above limit is not trivial to be calcu-
lated. In particular, we need to perform an asymptotic analysis of
the shape functional wðveðx̂ÞÞ with respect to the small parameter
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e. In order to calculate the topological derivative, in this work we
will apply the approach fully developed in the book by Novotny
and Sokołowski (2013). The method is based on the following result,
whose rigorous mathematical justification can be found in the pa-
per by Nazarov and Sokołowski (2003):

DTwðx̂Þ ¼ lim
e!0

1
f 0ðeÞ

d
de

wðveðx̂ÞÞ: ð4Þ

The derivative of wðveðx̂ÞÞ with respect to e can be seen as the sen-
sitivity of wðveðx̂ÞÞ, in the classical sense of Delfour and Zolésio
(2001) and Sokołowski and Zolésio (1992), to the domain variation
produced by an uniform expansion of the perturbation xe.

According to the literature, the topological derivative has been
fully developed for a wide range of one single physical phenome-
non modeled by partial differential equations. In addition, only a
few works dealing with multi-physics problems have been re-
ported in the literature, and, in general, the derived formulas are
presented in their abstract forms (see, for instance, the paper by
Cardone et al. (2010) on topological derivatives for piezoelectric
materials). In this work, therefore, we derive the topological deriv-
ative in its closed form for the total potential mechanical energy
associated to a thermo-mechanical semi-coupled system, when a
small circular inclusion is introduced at an arbitrary point of the
domain. In particular, we consider the linear elasticity system
(modeled by the Navier equation) coupled with the steady-state
heat conduction problem (modeled by the Laplace equation). The
mechanical coupling term comes out from the thermal stress in-
duced by the temperature field. Since this term is non-local, we
introduce a non-standard adjoint state, which simplifies the anal-
ysis allowing to obtain a closed form for the topological derivative.
Finally, we provide a full mathematical justification for the derived
formula and develop precise estimates for the remainders of the
topological asymptotic expansion. We note that this result can be
applied in technological research areas such as multi-physic topol-
ogy design of structures under mechanical and/or thermal loads.

This paper is organized as follows. Section 2 describes the mod-
el associated to a thermo-mechanical semi-coupled problem. The
topological sensitivity analysis is presented in Section 3, where
the main result of this work is derived: the topological derivative
in its closed form for the total potential mechanical energy associ-
ated to a thermo-mechanical semi-coupled system. Also in this
section, a computational framework designed to the numerical val-
idation of the topological derivative formula is presented. The pa-
per ends in Section 4 where concluding remarks are presented.

2. Formulation of the problem

In this work the topological derivative of the total potential en-
ergy associated to the mechanical problem submitted to thermal
stresses is derived. The topologically perturbed domain is obtained
when a small hole is introduced inside the geometrical domain.
Then, the resulting void is filled by an inclusion with a contrast
on the elastic, thermal and thermal-expansion material properties.

Therefore, we need to formulate the problems associated to both
original and topologically perturbed domains.

2.1. Unperturbed problem

Consider an open and bounded domain X 2 R2 representing an
elastic solid body subject to a linear thermo-mechanical deforma-
tion process. Assuming small deformation and variations of tem-
peratures, the functional that represents the total potential
energy of the mechanical system for a given temperature field h
is written as:

J vðu; hÞ :¼ 1
2

Z
X
rðuÞ � rus �

Z
X

QðhÞ � rus �
Z

CNu

�t � u; ð5Þ

where u represents the displacement field and �t is a external trac-
tion acting on boundary CNu . The displacement field on the bound-
ary CDu satisfies ujCDu

¼ �u, being �u a prescribed displacement.
Moreover, note that CDu \ CNu ¼£ and CDu [ CNu ¼ @X. The Cauchy
stress tensor rðuÞ in (5) is defined as:

rðuÞ :¼ Crus; ð6Þ

where rus is used to denote the symmetric part of the gradient of
the displacement field u, i.e.

rus :¼ 1
2
ðruþ ðruÞ>Þ: ð7Þ

The induced thermal stress tensor QðhÞ in (5) is defined as:

QðhÞ :¼ CBh: ð8Þ

Therefore the total stress, i.e. the contribution of the mechanical
and thermal stresses, is defined as

Sðu; hÞ ¼ rðuÞ � QðhÞ: ð9Þ

In addition, C denotes the four-order elastic tensor and B de-
notes the second-order thermo-elastic tensor. In the case of isotro-
pic elastic body, theses tensors are given by:

C ¼ 2lII þ kðI � IÞ and B ¼ aI) CB ¼ 2aðkþ lÞI; ð10Þ

with l and k denoting the Lame’s coefficients, and a the thermal
expansion coefficient. In terms of the engineering constant E
(Young’s modulus) and m (Poisson’s ratio) the above constitutive re-
sponse can be written as:

C ¼ E
1� m2 ½ð1� mÞII þ mðI � IÞ� and CB ¼ aE

1� m
I: ð11Þ

Considering the previous definitions, we have that the field u is
the solution of the following variational problem: given the tem-
perature field h, find u 2 UM , such thatZ

X
rðuÞ � rgs ¼

Z
X

QðhÞ � rgs þ
Z

CNu

�t � g 8g 2 VM : ð12Þ

In the variational problem (12), the set UM and the space VM are
defined as

Fig. 1. The topological derivative concept.
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