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a b s t r a c t

The purpose of this paper is to investigate the static behavior of helical structures under axial loads.
Taking into account their translational invariance, the homogenization theory is applied. This approach,
based on asymptotic expansion, gives the first-order approximation of the 3D elasticity problem from the
solution of a 2D microscopic problem posed on the cross-section and a 1D macroscopic problem, which
turns out to be a Navier–Bernoulli–Saint-Venant beam problem. By contrast with earlier references in
which a reduced 3D model was built on a slice of the helical structure, the contribution of this paper
is to propose a 2D microscopic model. Homogenization is first applied to helical single wire structures,
i.e. helical springs. Next, axial elastic properties of a seven-wire strand are computed. The approach is val-
idated through comparison with reference results: analytical solution for helical single wire structures
and 3D detailed finite element solution for seven-wire strands.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Helical structures are widely used in mechanical and civil engi-
neering applications. These structures are usually subjected to
large loads which can lead to the material degradation and cracks
associated with corrosion and mechanical fatigue. This threatens
the structural strength. In this framework, non-destructive testing
is a crucial tool for detection, localization and measurement of
material discontinuities. The choice of the appropriate technique
depends on dimensions and accessibility of the structure. Particu-
larly, ultrasonics allow to control large components, such as plates
and tubes, by analyzing their elastic guided waves. The purpose of
this study, which is composed of two parts, is to develop a numer-
ical model for the analysis of the elastic wave propagation phe-
nomenon in prestressed helical structures. This problem requires
the computation of the static prestress state. Therefore, a first
model will be developed in Part 1 of this paper, to compute this
static state. Taking into account this prestress state, a second mod-
el will be developed in Part 2, in order to analyze the wave propa-
gation in these prestressed structures. The goal of this first part of
this paper is thus to develop an approach that allows the computa-
tion of the prestress state in helical structures subjected to axial
load.

Numerous works have been devoted to the modeling of the sta-
tic behavior of helical structures as springs and multi-wire cables

under axial loads. For helical springs, an analytical model was pro-
posed among others in Ancker and Goodier (1958) and Wahl
(1963) considering the spring as an Euler–Bernoulli beam with
pitch and curvature corrections. Numerical approaches describing
the static behavior of helical springs have been also developed.
Among these works, a finite element model of half of a spring slice
has been proposed in Jiang and Henshall (2000).

The static behavior of seven-wire strands has been widely stud-
ied in literature. Various analytical models based on different
assumptions have been proposed, such as the model of Costello
(1977) which is one of the most popular. These models are re-
viewed in Jolicoeur and Cardou (1991) and compared in Jolicoeur
and Cardou (1991) and Ghoreishi et al. (2007). Besides, numerical
models relying on the finite element method were developed.
Some of them are based on beam elements (Durville, 1998;
Nawrocki and Labrosse, 2000; Páczelt and Beleznai, 2011), see also
Nemov et al. (2010) and Bajas et al. (2010) in which ITER supercon-
ducting cables composed of a large number of strands are studied.
But most of the time, 3D models are used, see e.g. Boso et al.
(2006), Ghoreishi et al. (2007), _Imrak and Erdönmez (2010), Nemov
et al. (2010), Stanova et al. (2011a,b) and Erdönmez and _Imrak
(2011). In order to obtain a good representation of the geometry
as well as the displacement solution, which may involve bending
phenomena, quadratic elements are employed. This leads to mod-
els which can be computationally expensive, when the model axial
length is about the pitch length. Therefore, as soon as the loading
fulfills helical symmetry, one can take benefit of this property to
reduce the model size. This has been achieved in Jiang et al.
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(1999) and Jiang et al. (2008) in which the computational domain
is restricted to a basic sector of a helical slice. Helical symmetry
may also be accounted for within the framework of homogeniza-
tion theory. This has been proposed first in Cartraud and Messager
(2006) using axial periodicity, and then improved in Messager and
Cartraud (2008), in which helical symmetry enables to consider
one slice of a strand. The derivation of the slice model is different
in Jiang et al. (1999), Jiang et al. (2008) and Messager and Cartraud
(2008). However, in both cases, helical symmetry yields displace-
ment constraints between the two faces of the slice, with a loading
under the form of an axial strain and a twist rate.

This work further advances Cartraud and Messager (2006) and
Messager and Cartraud (2008), taking advantage of the transla-
tional invariance. Helical symmetry can be actually considered
more efficiently. Thus the model can be reduced to a 2D one, i.e.
a cross-section model. This requires to formulate the homogeniza-
tion theory in a twisted coordinate system. This technique then al-
lows the computation of the static prestressed state of helical
structures (single wire and multi-wire) from the solution of a 2D
problem. Let us mention that an advanced analytical 2D model
has been recently proposed in Argatov (2011). This model takes
into account Poisson’s effect, contact deformation and allows to
obtain the overall strand stiffness as well as local contact stresses.
In this reference, plane strain was assumed to formulate the 2D
problem while in the present work helical symmetry is used.

The method developed in this paper is restricted to multi-wire
helical structures composed of a stack of helical wires wrapped
with the same twisting rate around a straight axis. As explained
in Section 3, this excludes the case of double helical structures
(such as independent wire rope core for instance) and cross-lay
strands.

This paper is organized as follows. First, in Section 2, the curvi-
linear coordinate system is introduced. Then in Section 3 the trans-
lational invariance is defined, which is a necessary condition for
the helical homogenization approach. Based on the asymptotic
expansion method and exploiting the translational invariance
property, the homogenization procedure is presented in Section
4. Its finite element solution is detailed in Section 5. The helical
homogenization approach is validated for helical single wire and
seven-wire structures by comparison with analytical or numerical
models in Section 6.

2. Curvilinear coordinate system

A helical structure is considered (see Fig. 1). Let ðeX ; eY ; eZÞ its
Cartesian orthonormal basis. The helix centreline is defined by its
helix radius R in the Cartesian plane ðeX ; eYÞ and the length of
one helix pitch along the Z-axis denoted by L. This helix centerline
can be described by the following position vector:

rðsÞ ¼ R cos
2p
l

sþ h

� �
eX þ R sin

2p
l

sþ h

� �
eY þ

L
l

seZ ; ð1Þ

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 4p2R2

p
is the curvilinear length of one helix pitch

and h is the helix phase angle in the Z ¼ 0 plane. For a seven-wire
strand, h is equal to ðN � 1Þp=3, where N ¼ 1; ::;6 refers to the num-
ber of the helical wire. h is equal to zero for a single wire helical
structure. The helix lay angle U is defined by tan U ¼ 2pR=L. A com-
plete helix is described by the parameter s varying from 0 to l.

2.1. Serret–Frenet basis

A Serret–Frenet basis ðen; eb; etÞ associated to the helix can be
defined (see e.g. Gray et al. (2006)), where the unit vectors
en; eb; et are given by et ¼ dr=ds; den=ds ¼ seb � jet and
deb=ds ¼ �sen. For helical curves, the curvature j ¼ 4p2R=l2 and

the torsion s ¼ 2pL=l2 are constant. In the Cartesian basis, en; eb

and et are expressed by:

en ¼ � cos
2p
l

sþ h

� �
eX � sin

2p
l

sþ h

� �
eY ;

eb ¼
L
l

sin
2p
l

sþ h

� �
eX �

L
l

cos
2p

l
sþ h

� �
eY þ

2p
l

ReZ ;

et ¼ �
2pR

l
sin

2p
l

sþ h

� �
eX þ

2pR
l

cos
2p
l

sþ h

� �
eY þ

L
l

eZ :

ð2Þ

The normal vector en remains parallel to the ðeX ; eYÞ plane while
eb and et move in the three directions of the Cartesian basis as s
and h vary.

2.2. Twisted basis

A special case of the Serret–Frenet basis denoted by ðex; ey; eZÞ
corresponding to j ¼ 0 and s ¼ 2p=L can be considered. It corre-
sponds to a twisted coordinate system along the Z-axis ðs � ZÞwith
axial periodicity L. The unit vectors ex and ey rotate around the Z-
axis and remain parallel to the ðeX ; eY Þ plane (see Fig. 1). In the
Cartesian basis, ex and ey are expressed as:

ex ¼ � cos
2p
L

Z þ h

� �
eX � sin

2p
L

Z þ h

� �
eY ;

ey ¼ sin
2p
L

Z þ h

� �
eX � cos

2p
L

Z þ h

� �
eY :

ð3Þ

It should also be noted that this twisted coordinate system coin-
cides with the one proposed in Onipede and Dong (1996), Nicolet
et al. (2004) and Nicolet and Zola (2007) for the analysis of twisted
and helical structures.

2.3. Covariant and contravariant bases

Differential operators can not be expressed directly in the Ser-
ret–Frenet or twisted bases. They have first to be expressed in
the covariant and contravariant bases. The reader can find an in-
depth treatment of curvilinear coordinate systems in Chapelle
and Bathe (2003); Synge and Schild (1978); Wempner (1981) for
instance.

From the twisted basis ðex; ey; eZÞ, a new coordinate system
ðx; y; ZÞ is built, for which any position vector can be expressed as:

Fig. 1. Left: One helix pitch and its twisted basis associated to the twisted
coordinate system ðx; y; ZÞ. Right: view normal to the Z-axis. The point Z ¼ s ¼ 0 lies
in the ðeX ; eY Þ plane.
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