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a b s t r a c t

This paper corresponds to the second part of a study that aims at modeling helical structures accounting
for translational invariance. In the Part 1 of this paper, the static behavior has been addressed using a
helical homogenization approach which provides the stress state corresponding to axial loads. The latter
is considered as a prestressed state, for elastic wave propagation analysis in helical waveguides, which is
the subject of the Part 2 of this paper. Non destructive testing of springs and multi-wire strands is a
potential application of the proposed model. Accounting for translational invariance, the elastodynamic
equations of prestressed helical structures yield a 2D problem posed on the cross-section, corresponding
to a so-called semi-analytical finite element (SAFE) formulation. For helical springs, the numerical model
is validated with an analytical solution corresponding to a Timoshenko beam approximation. It is shown
that the influence of the prestressed state is significant at low frequencies. Finally, a seven-wire strand
subjected to axial loads is considered. The computed dispersion curves are compared to experimental
data. Good agreement is obtained for the first compressional-like modes and their veering central
frequency.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is the second part of a study that aims at modeling
helical structures accounting for translational invariance. In Part
1, the static state in the case of axial loads has been addressed. Tak-
ing into account the effects of prestress and geometry deformation
due to these static loads, the objective of Part 2 is the computation
of wave modes guided by the helical structures.

Inspection methods based on elastic guided waves are among
the most popular techniques of non destructive testing. Due to
the complexity of signals, this technique is often restricted to sim-
ple geometries such as plates and pipes. The computation of modes
of propagation in more complex geometries (arbitrary cross-
section, curved axis,. . .) requires appropriate simulation tools,
typically based on finite element methods.

A first method based on the Floquet conditions, applicable to
periodic structures, has been used for straight structures (Gry
and Gontier, 1997; Duhamel et al., 2006; Mencik and Ichchou,
2007) and for helical waveguides (Treyssède, 2007). A more effi-
cient method, valid for translationally invariant structures and
often referred to as the semi-analytical finite element (SAFE) meth-
od, has also been developed. This technique has been proposed in

early works in Dong and Nelson (1972). With this method, the
problem is reduced on the cross-section, which decreases the com-
putation time. More recently, the SAFE method has been used for
straight waveguides with arbitrary cross-section (Gavric, 1995;
Damljanovic and Weaver, 2004; Hayashi et al., 2006; Jezzine,
2006) or material complexity (Rattanawangcharoen et al., 1992;
Zhuang et al., 1999; Bartoli et al., 2006; Marzani, 2008). This ap-
proach has also been applied to curved waveguides: twisted in
Onipede and Dong (1996), toroidal in Demma et al. (2005) and
Finnveden and Fraggstedt (2008) and helical in Treyssède (2008).
Finally, a SAFE method modeling the propagation of elastic waves
in seven-wire strands has been developed in Treyssède and La-
guerre (2010).

Helical structures such as springs and strands are generally sub-
jected to axial loads. The above-mentioned works are restricted to
the propagation of guided waves in unloaded structures. Only few
studies have extended the SAFE method to loaded waveguides.
Straight waveguides under axial loads have been considered in
Chen and Wilcox (2007) and Loveday (2009). To the authors
knowledge, there is no general model in the literature that allows
to determine guided modes propagating in prestressed curved
waveguides.

Therefore the goal of this paper is to propose a numerical model
for the propagation of guided waves in helical structures subjected
to axial loads, particularly in prestressed multi-wire strands. This
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study is limited to linear elastic materials. The SAFE method is
adopted, which allows to solve the 3D elastodynamic equations
of motion thanks to a 2D model and without beam approximation.

The method developed in this paper is restricted to multi-wire
helical structures composed of a stack of helical wires wrapped
with the same twisting rate around a straight axis. As explained
in Section 3 of Part 1, this excludes the case of double helical struc-
tures (such as independent wire rope core for instance) and cross-
lay strands.

The paper is organized as follows. Considering the static state
computed in Part 1 as the prestressed state, the variational formu-
lation associated with the superimposed linear dynamics is first
described in Section 2. The twisting coordinate system is then
introduced and differential operators are expressed in this system
in Section 3. Exploiting the translational invariance property, the
3D variational formulation is then reduced in Section 4 to a 2D
problem posed on the cross-section, which is classical in the
framework of SAFE methods. In Section 5, an energy velocity
expression is derived for prestressed waveguides. Using SAFE
matrices, the equality between group and energy velocities is
proved for undamped materials. Then for helical springs, numerical
results are compared in Section 6 to those of a beam model pro-
posed in Frikha et al. (2011). For seven-wire strands subjected to
axial loads, using stick contact conditions between the core and
peripheral wires, numerical results are compared to experimental
data in Section 7.

2. Dynamic motion of prestressed structures

The analysis of the dynamics of prestressed structures can be
decomposed into a static problem, solved in Part 1 of this paper,
and the motion superimposed on this prestressed state, which is
the aim of Part 2. Therefore, three configurations must be distin-
guished: the initial configuration (without initial stress), the pre-
stressed static configuration (which is denoted V0) and the final
configuration including dynamics. An updated Lagrangian formu-
lation is used, the variables being expressed in the prestressed sta-
tic configuration.

One assumes a linear and elastic material behavior and a time-
harmonic e�ixt evolution of the solution. Considering small-
amplitude waves as perturbations onto the prestressed static state,
the 3D variational formulation governing elastodynamics is given
by (see e.g. Bathe (1996) and Yang and Kuo (1994)):

8du;
Z

V0

d� : C0 : �dV0 þ
Z

V0

trðr0du � r0 � r0uTÞdV0

�x2
Z

V0

q0du � udV0 ¼ 0; ð1Þ

with du kinematically admissible and where u and
� ¼ 1=2ðr0uþr0uTÞ denote the displacement and the strain ten-
sor, respectively. The subscript 0 refer to the prestressed static con-
figuration: C0;q0 and V0 denote the elasticity tensor, the material
density and the structural volume in the prestressed configuration.
trð�Þ is the trace and r0 is the gradient operator with respect to the
prestressed configuration. r0 is the Cauchy prestress, i.e. the stress
tensor associated with the prestressed state. The second term of the
formulation, related to r0, is sometimes referred to as the geometric
stiffness in the literature.

In the context of non-linear mechanics, Eq. (1) is the so-called
linearized updated Lagrangian formulation, representing the mo-
tion of small perturbations superimposed on a given state. Its der-
ivation requires a non-linear geometrical analysis (large
displacement or strain). This implies that the prestressed configu-
ration should correspond to a non-linear geometrical state. Yet in
this paper, one will assume that the effects of non-linearity of

the prestressed state can be neglected on dynamics, and the linear
computations of Part 1 will be used for simplicity.

3. Formulation in the curvilinear coordinate system

For the wave propagation analysis in curved waveguides, the
variational formulation described in Section 2 must be expressed
in an appropriate curvilinear coordinate system. In this paper, a
coordinate system that satisfies translational invariance both for
helical single-wire and multi-wire waveguides is required. There-
fore, the twisted basis is chosen. The translational invariance prop-
erty will be checked in Section 4. The reader may refer to Part 1 of
this paper for more details.

3.1. Twisted basis

One considers a helical single-wire waveguide (see Fig. 1 in Part
1). Let ðeX ; eY ; eZÞ denotes the Cartesian orthonormal basis. The
centreline is defined by a helix of radius R in the Cartesian plane
ðeX ; eY Þ and pitch L along the Z-axis. The helix lay angle U is defined
by tan U ¼ 2pR=L.

The twisted basis ðex; ey; eZÞ has been defined in Part 1, as an
orthonormal basis rotating around the Z-axis. It corresponds to a
particular case of helical system with j ¼ 0 and s ¼ 2p=L, where
j and s denote the curvature and the torsion respectively. The unit
vectors ex and ey are expressed in the Cartesian basis by Eq. (3) of
Part 1.

However throughout Part 2, geometrical parameters R; L;U;j
and s are now associated with the prestressed configuration, i.e.
the deformed helix under the action of the static axial load. Rigor-
ously, these parameters should be denoted with subscripts 0, omit-
ted for brevity’s sake of notations throughout Part 2. When needed,
we will use subscripts i (Ri or Ui for instance) to refer to the initial
geometrical parameters, i.e. parameters associated with the initial
configuration (without initial stress).

In order to express differential operators in the twisted basis,
one has to develop them in the covariant and contravariant bases,
(g1;g2;g3) and (g1;g2;g3), which have been defined by Eqs. (5) and
(7) in Part 1.

One recalls that the Christoffel symbol of the second kind Ck
ij can

be calculated from Ck
ij ¼ gi;j � gk, where gi;j corresponds to the deriv-

atives of the covariant basis. Its expression in the twisted basis has
been obtained in Eq. (8) of Part 1.

As a side remark, note that twisting coordinates have also been
used for elastic wave propagation in pretwisted beams (Onipede
and Dong, 1996), for electromagnetic waves in optical helical
waveguides (Nicolet et al., 2004; Nicolet and Zola, 2007) and for
twisted electrostatic problems (Nicolet et al., 2007).

Fig. 1. Cross-section FE mesh of a helical waveguide with Ri=a ¼ 10 and Ui ¼ 75� .
Grey: initial mesh (EE ¼ 0), black: updated mesh (EE ¼ 40%), plotted in the initial
and updated twisting coordinate system respectively.
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