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a b s t r a c t

This paper studies the fracture mechanics of a piezoelectric material layer with an internal crack under
the framework of hyperbolic, non-Fourier heat conduction. The paper includes two parts. The first part is
for the case of a heated crack, in which the internal crack can be a source of heating (or cooling). This case
develops the mode I thermal stress intensity factor at the crack tip. The second part is for the thermally
insulated crack, which does not allow any penetration of the thermal flow across the crack. This case
develops the mode II thermal stress intensity factor at the crack tip. Numerical results for the thermal
stress intensity factor are plotted to show the effects of the thermal relaxation time, the crack length
and the layer thickness. Comparisons between the non-Fourier results and the classical Fourier results
are made. Limiting cases of the current problem include the solutions of thermoelastic crack problem
and fracture mechanics associated with classical Fourier heat conduction.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The classical Fourier heat conduction law assumes that the
speed of heat propagation is infinite. This means that a thermal
disturbance in a material can be felt instantaneously anywhere in
the material. The accuracy of Fourier’s heat conduction law is suf-
ficient for many practical engineering applications. However, this
theory cannot accurately explain conduction of heat caused by
highly-varying thermal loading such as pulsed laser heating. For
example, as pointed out by Babaei and Chen (2008), the surface
temperature of a slab measured immediately after a sudden ther-
mal shock is 300 �C higher than that predicted by Fourier’s law
(Maurer and Thompson, 1973). The Fourier heat conduction theory
also breaks down at very low temperatures and when the applied
heat flux is extremely large. Recent experimental and numerical
studies have also reported breakdown of Fourier’s law in nanoma-
terials, even if the phonon mean free path is much shorter than the
characteristic length (Tzou, 1995a). The mechanism may lie in the
ultrahigh-rate heat flux resulted from the extremely high temper-
ature gradient or the extremely small cross sectional area. In these
cases, the traditional continuum assumption may be still valid,
even if the characteristic length falls into nanoscale (Wang et al.,
2011). Such phenomena are of great interests because of much
more potential technical and engineering applications, but still
lack fundamental understandings. To better explain heat conduc-

tion in solids, non-Fourier heat conduction theories have been
developed.

One of the non-Fourier theories is hyperbolic heat conduction
theory. Cattaneo (1958) and Vernotte (1958) first independently
introduced an additional material parameter, the thermal relaxa-
tion time, to generate a modification of Fourier’s Law. The thermal
relaxation time introduced in the theory is the time that the tem-
perature field needs to adjust itself to thermal disturbances. This
theory is called hyperbolic heat conduction because it results in a
hyperbolic differential equation for temperature rather than the
parabolic one obtained using Fourier’s law. Since the proposal of
the hyperbolic heat conduction model, several solutions have been
given in the literature. Gembarovic and Majernik (1988) investi-
gated non-Fourier effects in an insulated finite slab with a surface
heat flux boundary conditions using Laplace transform. Lew-
andowska and Malinowski (1998) solved the hyperbolic equation
for a semi-infinite body with a heat source. Later, Lewandowska
and Malinowski (2006) present an analytical solution for the case
of a thin slab symmetrically heated on both sides. Abdel-Hamid
(1999) modeled the non-Fourier heat conduction in a finite med-
ium subjected to a periodic heat flux using the finite integral trans-
form technique. Also considered are the non-Fourier heat
conductions in a finite medium for the case of an arbitrary periodic
(Moosaie, 2007) and non-periodic (Moosaie, 2008) surface distur-
bances. Recently, Chen (2010) studied the hyperbolic heat conduc-
tion problems in cylinders using a hybrid Green’s function method.
Atefi and Talaee (2011) established an analytical solution for the
non-Fourier axisymmetric temperature field within a finite hollow
cylinder by using the hyperbolic heat conduction. Torabi and
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Saedodin (2011) analytically and numerically investigated the
hyperbolic heat conduction in cylindrical coordinates subjected
to heat flux boundary conditions. Solutions for the non-Fourier
hyperbolic heat conduction in a functionally graded heterogeneous
sphere (Babaei and Chen, 2008) and hollow cylinder (Babaei and
Chen, 2010) were also presented. In addition, Keles and Conker
(2011) conducted the non-Fourier hyperbolic heat conduction
analysis for heterogeneous hollow cylinders and spheres made of
functionally graded material. Clearly, most studies on the non-Fou-
rier heat conduction have been carried out for the development of
solution methods for the hyperbolic heat conduction equation. A
comprehensive review of numerical methods for such equation
has been given by Miller and Haber (2008).

It is well known that components subjected to temperature var-
iation usually give rise to defects or cracks, which will disturb the
local thermal flow distribution. The high intensification of the tem-
perature gradient may induce thermal stress that may cause rapid
crack growth. Hence, development of analyzing methods that can
effectively estimate the thermal flow distribution in the materials
with cracks is essential. On the other hand, piezoelectric materials
are usually operated at the high temperature or lower temperature
environment. The temperature change in these materials can result
in severe thermal stresses. Because of the brittle nature of piezo-
electric materials, excessive thermal stresses can breakdown or re-
duce the functionality and reliability of these advanced materials.
Therefore, evaluation of coupling thermo-electro-mechanical
cracking of piezoelectric materials is a topic of great interest. Ueda
and Ashida (2009) studied the problem of an infinite row of paral-
lel cracks in a nonhomogeneous material strip under static
mechanical and transient thermal loading conditions. Tsamasphy-
ros and Song (2005) constructed a general solution to the mechan-
ical and electric fields in a finite thermopiezoelectric plate
containing an isolated crack. Qin and Mai (2002) established a
boundary element formulation for the analysis of interaction be-
tween a hole and multiple cracks in piezoelectric materials. Gao
and Wang (2001) presented an explicit treatment of the general-
ized 2D thermopiezoelectric problem of an interfacial crack be-
tween two dissimilar thermopiezoelectric media by means of the
extend Stroh formalism. Qin (2000) obtained the General solutions
for thermopiezoelectrics with various holes under thermal loading.
Gao and Noda (2004) investigated the thermal-induced interfacial
cracking of magnetoelectroelastic materials.

There have been some pioneering investigations for the thermal
stresses around cracks in thermoelastic materials using the hyper-
bolic heat conduction model. Manson and Rosakis (1993a,b) pro-
posed a solution to the hyperbolic heat conduction equation for a
traveling point heat source around a propagating crack tip, and
measured the temperature distribution at the tip of a dynamically
propagating crack experimentally. Tzou (1990a) analyzed the ther-
mal field around a moving crack tip and studied the effect of crack
velocity on the properties of the thermal shock. Other research in
the field include the analysis of thermal-shock waves induced by
a moving crack-a heat-flux formulation (Tzou, 1990b), a sud-
denly-opening crack in a coupled thermoelastic solid with thermal
relaxation (Brock and Hanson, 2006), the second sound in a
cracked layer based on Lord–Shulman theory (Zamani et al.,
2011). Recently, Chen and Hu (2012) gave a thermoelastic analysis
of a cracked half-plane under a thermal shock based on the hyper-
bolic heat conduction theory. More recently, Chen and Hu (2012)
studied the transient temperature and thermal stresses around a
partially insulated crack in a thermoelastic strip under a tempera-
ture impact by using the hyperbolic heat conduction theory.

This paper establishes a solution technique for the thermal frac-
ture of a piezoelectric material layer under the framework of
hyperbolic heat conduction model. Laplace transform is used to
solve the time-varying behavior of the thermoelectroelastic field.

Transient crack tip stress intensity factor is obtained to show the
influences of the non-Fourier effect, crack size and layer thickness.
Solution methods for the problems of heated crack (Section 3) and
thermally insulated crack (Section 4) are established separately.

2. Basic governing equations

In the X–Y–Z coordinate system, the constitutive equations for
the thermal flux and balance equation for the temperature under
hyperbolic heat conduction law are (Tzou, 1995a; Wang and Han,
2012):
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where q denotes the heat flux; k is the thermal conductivity coeffi-
cient, q is the mass density and c is the specific heat, and sq is the
thermal relaxation time, which is related to the collision frequency
of the molecules within the energy carrier. In has been assumed
that the thermal and temperature fields are not affected by the
mechanical fields and the heat source is neglected. The thermal
conduction equation (2) must be solved for prescribed boundary
and initial conditions. The initial conditions specify the temperature
and thermal flux distributions at time zero. These are
TðXj;0Þ ¼ T0ðXj;0Þ and qiðXj;0Þ ¼ �q0iðXj;0Þ. A quantity with an over
bar means that the quantity is prescribed. From Eq. (1), the initial
conditions for thermal flux distribution can also be understood as
qc@TðXj;0Þ=@t ¼ ��q0i;iðXj;0Þ. In most cases, the initial temperature
and thermal flux are zero. Consequently, the initial conditions are
equivalent to T(Xj, 0) = 0 and @T(Xj, 0)/@t = 0.

Consider the plane problem of a piezoelectric layer so that all
the field variables are functions of X and Z only. The poling direc-
tion of the piezoelectric layer is parallel to the positive Z-axis. De-
note the displacements along the X- and Z-directions as u and w,
respectively, and the electric potential as /. Constitutive equations
for piezoelectric materials polarized along Z-direction are
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where rij and Di (i; j ¼ x; z) are stresses and electrical displace-
ments; cij, eij and �ii are elastic constants, piezoelectric constants
and dielectric permittivities, respectively, kii are temperature-stress
coefficients, g33 is temperature-electric displacement coefficient. In
the absence of body forces and body charges, the equilibrium equa-
tions are given by
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which can be expressed in terms of displacements and electric po-
tential with the substitution of constitutive equations (3). Note that
the electroelastic responses in the thermal stress approach here are
assumed to be instant. The approach used here has already been
adopted by other researchers for the determination of thermoelastic
deformation associated with non-Fourier heat conduction (Brock
and Hanson, 2006). It provides an easy yet sufficiently accurate
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