
Static, free vibration and stability analysis of three-dimensional nano-beams
by atomistic refined models accounting for surface free energy effect

Gaetano Giunta a,⇑, Yao Koutsawa a, Salim Belouettar a, Heng Hu b

a Centre de Recherche Public Henri Tudor, 29, Avenue John F. Kennedy, L-1855 Luxembourg, Luxembourg
b School of Civil Engineering, Wuhan University, 8, South Road of East Lake, Wuchang, 430072 Wuhan, PR China

a r t i c l e i n f o

Article history:
Received 19 November 2012
Received in revised form 10 January 2013
Available online xxxx

Keywords:
Nano-beams
Higher-order models
Surface free energy
Orthotropic materials
Navier-type solution

a b s t r a c t

This work presents several higher-order atomistic-refined models for the static, free vibration and stabil-
ity analysis of three-dimensional nano-beams. Stemming from a one-dimensional approach and thanks
to a compact notation for the a priori kinematic field approximation over the beam cross-section, the
model derivation is made general regardless the approximation order. This latter is a free parameter of
the formulation. Several higher-order beam theories can be obtained straightforwardly. Classical beam
models, such as Euler–Bernoulli’s and Timoshenko’s, are obtained as particular cases. The assumed con-
stitutive equations for orthotropic materials account for the surface free energy effect as well as the third-
order elastic constants. The resulting stiffness coefficients depend upon the cross-section side length. The
governing equations and boundary conditions are variationally obtained through the Principle of Virtual
Displacements. A Navier-type, strong form solution is adopted. Simply supported beams are, therefore,
investigated. Static, free vibration and buckling analyses are carried out in order to investigate the effect
of the cross-section side as well as the crystallographic plane orientation on the mechanical response.
Beams with different values of the length-to-thickness ratio are considered. Results are validated in terms
of accuracy and computational costs towards three-dimensional FEM solutions. Numerical investigations
show the advantages of refined beam models over the classical ones demonstrating that accurate results
can be obtained with reduced computational costs.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nano-beams hold a promise for a wide variety of applications
such as sensors, actuators, transistors, probes and resonators in
nano-electro-mechanical systems and biotechnology. Due to their
great technological interest and potential applications, many
researchers devoted their effort toward the determination of the
mechanical properties and mechanical response of nano-beams.
It is well recognised that, for this type of structures the traditional
continuum mechanics is no longer suitable. The reduced coordina-
tion of atoms near a free surface induces a corresponding redistri-
bution of electronic charge that alters the binding situation, see
Sander (2003). As a result, the energy of these atoms is, in general,
different from that of the atoms in the bulk. The elastic moduli of
the surface region, therefore, may differ from those of the bulk.
When the size of the element is of the order of micrometers or
higher, the surface region can be neglected since it is typically very
thin (few atomic layers) and the overall modulus can be assumed
as the bulk modulus of a structural element. In the size range of

tens of nano-meters, where the surface-to-volume ratio is signifi-
cant, the surface region can no longer be neglected in considering
the overall elastic behaviour of nano-sized structural elements. The
effective modulus of nano-sized structural elements should be
rather considered and, by definition, it is size-dependent, see Din-
greville et al. (2005). Nano-beam has always been considered as
made of isotropic materials although Dingreville et al. (2005)
showed that the effective modulus tensor is orthotropic. The
third-order elastic constants of a perfect crystal lattice are also
generally neglected. As far as the determination of the mechanical
properties is concerned, Dingreville et al. (2005) developed a
framework to incorporate the surface free energy (SFE) within
the continuum mechanics. Analytical expressions were derived
for the effective elastic modulus tensor of nano-sized structural
elements accounting for both the effects of the SFE and the third-
order elastic constants of the perfect crystal lattice. Explicit expres-
sions of the effective elasticity tensors were obtained for thin films,
wires and spherical particles. In the case of nano-wires and nano-
films, the effective modulus tensor was found to be orthotropic.
These effective elasticity tensors were derived in the framework
of the classical continuum mechanics. They can be, therefore, used
directly in continuum mechanics models for predicting the overall
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response of nano-sized structures. Dingreville and Qu (2007)
developed a semi-analytic method to compute the surface elastic
properties of crystalline materials. Using this method, surface elas-
tic properties (such as the intrinsic surface energy density, intrinsic
surface stress and surface elastic stiffness) are obtained analyti-
cally in terms of the inter-atomic potentials of the material. The
equilibrium (or relaxed) position of the atoms near the free surface
are required in these analytical expressions. The relaxed position of
the atoms near the free surface can be obtained via a standard
molecular simulation of a free surface, see, for instance, Dingreville
and Qu (2007) and Dingreville (2007). This semi-analytical method
reduces the amount of computation time significantly when com-
pared with existing methods. It is worth pointing out that there are
other techniques, such as the fluctuation methods, to calculate the
elastic constants, see Zhen and Chu (2012) and Cui et al. (2007) and
references therein. The fluctuation methods are generally used to
calculate the elastic constants at finite temperature. The very re-
cent deformation-fluctuation hybrid method proposed by Zhen
and Chu (2012) is particularly useful for complicated many-body
potentials for which the analytical second derivative of the energy
is challenging or impractical to obtain. To the best of the authors’
knowledge, nano-beams have been usually investigated through
classical Euler–Bernoulli’s (EBT) or Timoshenko’s (TBT) beam mod-
els. Jiang and Yan (2010) investigated the SFE effect on the elastic
flexural behaviour of nano-wires via Timoshenko’s beam model,
see Timoshenko (1921, 1922) and Timoshenko and Goodier
(1970). Aydogdu (2009) presented a generalised non-local beam
theory to study the bending, buckling and free vibration of nano-
beams. Eringen’s non-local constitutive equations were there used
and, from a structural modelling point, classical as well as Reddy’s
and Levinson and Aydogdu theories were adopted. SFE influence on
buckling and free vibration response of nano-beams was addressed
by Fu et al. (2010). Wang and Feng (2009) studied the SFE effect on
the stability of nano-wires under uni-axial compression. This paper
presents a static, free vibrations and stability analysis of nano-
beams investigating the influence on the mechanical response of
the SFE and of the third-order material elastic constants. Several
higher-order beam theories are derived by means of a unified for-
mulation. This modelling framework has been previously derived
for anisotropic plates and shells, see Carrera (2003), Carrera and
Giunta (2009a,b) and Giunta et al. (2011b), and, recently, extended
to macro-scale beam structures, see Carrera and Giunta (2010),
Carrera et al. (2010, 2011), Giunta et al. (2011a,c, 2013) and Biscani
et al. (2011). Through a concise notation for the displacement field,
the governing differential equations and the corresponding bound-
ary conditions are derived in terms of a ‘‘fundamental nucleo’’ that
does not depend upon the approximation order. This latter can be
assumed as a formulation free parameter. Displacement-based
theories that account for non-classical effects, such as transverse
shear and cross-section in- and out-of-plane warping, can be for-
mulated. It is worth mentioning that no special warping functions
need to be assumed. TBT and EBT classical models are obtained as
particular cases. Slender and thick nano-beams are investigated.
The proposed models are validated through comparison with
three-dimensional FEM solutions showing that accurate results
can be obtained with reduced computational costs.

2. Preliminaries

Beam structures are characterised by a dimension, the axial
extension l, that is predominant when compared to the leading
dimension of the cross-section X. This later is identified by inter-
secting the beam with planes orthogonal to its axis. Cross-section
geometry and reference system are presented in Fig. 1. The dis-
placement field is:

uTðx; y; z; tÞ ¼ uxðx; y; z; tÞ uyðx; y; z; tÞ uzðx; y; z; tÞf g ð1Þ

ux;uy and uz are the displacement components along x-, y- and z-
axis, respectively. Superscript ‘T’ represents the transposition oper-
ator. Voigt’s notation stress (r) and the linear strain (e) vectors are
grouped into the following in- and out-of-plane components:
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The relation between the linear strain and displacement compo-
nents are:
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Eq. (3) can be written in a compact notation:

ep ¼ Dpu
en ¼ Dnpuþ Dnxu

ð4Þ

Dp;Dnp and Dnx are the following matrices of differential operators:
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where I is the unit matrix. Geometric non-linearities are considered
for the axial strain component in a Green–Lagrange sense, see Red-
dy (2004):

enl
xx ¼

1
2

u2
x;x þ u2

y;x þ u2
z;x

� �
ð6Þ

Under the hypothesis of a linear elastic orthotropic material, the
generalised Hooke law holds:

r ¼ Ĉe ð7Þ

Ĉ is the effective material stiffness matrix. According to Eq. (2), the
latter equation reads:

rp ¼ Ĉppep þ Ĉpnen

rn ¼ Ĉnpep þ Ĉnnen

ð8Þ

Matrices Ĉpp; Ĉpn; Ĉnp and Ĉnn in Eq. (8) are:

Ĉpp ¼
Ĉ22 Ĉ23 0
Ĉ23 Ĉ33 0
0 0 Ĉ44
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The effective material stiffness coefficients Ĉij for nano-beams with
square cross-sections accounting for surface free energy and the
third-order elastic constants are obtained according to the method
proposed by Dingreville et al. (2005). For the sake of completeness
and clarity, the next section is devoted to this method as well as the
salient aspects of the molecular mechanics simulation.

3. Effective elastic properties of square cross-section nano-
beams with surface effect

A two-step approach for establishing a link between the atom-
istic structure of surfaces and the macroscopic bulk elastic material
properties has been proposed by Dingreville et al. (2005). The sur-
face free energy, that is a thermodynamic parameter of a contin-
uum, is first formulated in a manner that accounts for the
surface atomistic structure. This calculation is based on molecular
dynamics. The resulting surface free energy is, then, used for the
phenomenological description of the strain energy density for
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