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In a previous paper from the authors, the bounds from Kelsey et al. (1958) were applied to a sandwich
panel including a folded core in order to estimate its shear forces stiffness (Lebée and Sab, 2010b). The
main outcome was the large discrepancy of the bounds. Recently, Lebée and Sab (2011a) suggested a
new plate theory for thick plates - the Bending-Gradient plate theory - which is the extension to heter-
ogeneous plates of the well-known Reissner-Mindlin theory. In the present work, we provide the Bend-
ing-Gradient homogenization scheme and apply it to a sandwich panel including the chevron pattern. It
turns out that the shear forces stiffness of the sandwich panel is strongly influenced by a skin distortion
phenomenon which cannot be neglected in conventional design. Detailed analysis of this effect is

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Sandwich panels are widespread in everyday life. Their struc-
tural efficiency is well-known and is a main criterion in possible
applications. They are made of a light and thick core which is glued
between two stiff skins. When the sandwich panel is bent, the
skins are put into traction and compression. Thus, their design con-
sists in maximizing their mechanical properties. This is not the
case of the core which role in the sandwich panel is to resist shear
forces. It must be as light as possible but not too weak. Hence the
design of a core is driven by a trade-off between lightness and
mechanical properties. This trade-off led to a wide diversity of
cores in which cellular materials take a center stage. Among them,
honeycomb structures are still considered as the most efficient cel-
lular core geometries in many respect for high performance sand-
wich panels in aeronautics. However, they have some drawbacks.
The iterative production process makes it an expensive material.
Furthermore, once glued between skins, their cells are closed
which makes them prone to store water condensation during suc-
cessive take-off and landing of airplanes. This water damages the
bound between core and skin and caused unexpected delamina-
tions. Thus core design is still an innovative field nowadays. In or-
der to tackle these drawbacks, folded cores gained new interest
from the industry because of new production means and an open
cell geometry.
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Folded core patterns are really ancient and emerged mostly
from the art of folding paper (Origami) and pleating techniques
for textile (see Atelier Lognon, Paris, for instance). Therefore, the
use of a periodic folded pattern as a core is well-known since the
emergence of sandwich panel technology and some patents date
back to the first use of honeycomb cores (Hochfeld, 1959; Rapp,
1960; Gewiss, 1960). However they remained largely ignored be-
cause of the lack of an efficient production process. Recently, con-
tinuous production means were developed (Basily and Elsayed,
2004a; Basily and Elsayed, 2007; Kehrle, 2004) which might create
a new market for this type of core.

This regain of interest led to several studies concerning folded
cores. Pattern generation was studied in details (Kling, 1997,
2005) and led to a broad variety of configurations. The present
work is dedicated to the chevron pattern (Fig. 1) which is the sim-
plest pattern and one of the first to be used as a core in sandwich
panels. A large amount of experimental work was done in order to
investigate the mechanical behavior of these cores. Basily and
Elsayed (2004b), Nguyen et al. (2005) and Heimbs et al. (2010)
mostly studied impacts on sandwich panel including folded cores.
Kintscher et al. (2007) loaded folded cores with both transverse
shear and compression up to failure. Fischer et al. (2009) and
Baranger et al. (2010a) focused on the behavior of the aramid paper
used in folded cores. Moreover, in order to spare experimental bur-
den, intensive numerical simulations were performed by Heimbs
(2009), Fischer et al. (2009) and Baranger et al. (in press). The final
objective is to implement “virtual testing” tools. These works point
out the influence of the knowledge of the constitutive material as
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Fig. 1. Chevron folded paper.

well as the critical influence of the geometrical defects on the
strength of folded cores. However the core is always separated
from the skins in these studies, which precludes any possible inter-
action between skins and core.

As already mentioned, the main action of the core is to carry
shear forces. Thus, the first mechanical property one wants to as-
sess is the shear forces stiffness of the sandwich panel and then,
even more critically, the strength of the sandwich panel under
shear forces. Actually, very few methods exist for such estimation
because the behavior of thick plates is still a theoretical issue. The
main reason is the ignorance of the effect of shear forces at micro-
scopic scale (the unit-cell in the case of periodic sandwich panels).
However, when dealing with sandwich panels, it is generally
acknowledged that the skins simply put the core into transverse
shear. Based on this argument, Kelsey et al. (1958) suggested
bounds for estimating shear forces stiffness of sandwich panels
including honeycomb. Basically, they apply uniform shear stress
or strain directly to the core alone, replacing the action of the skins.
In the case of chevron pattern, the upper bound was first derived
by Miura (1972). Then Lebée and Sab (2010b) derived both upper
and lower bounds and demonstrated that with manufactured
geometries, they were very loose (more than 100% discrepancy).
This gap between bounds comes from the omission of possible
interaction between the skins and the core. Usually, engineers
refer to the upper bound, implicitly assuming that the skins remain
very stiff (Kelsey et al., 1958). However, sandwich panel theory
relies on the assumption of thin skins which is an antagonistic
demand. Thus we need more refined homogenization techniques
in order to compute exactly the shear forces stiffness. A new theory
for thick plates with varying constitutive material through the
thickness was suggested in Lebée (2010) and Lebée and Sab
(2011a). This theory, called Bending-Gradient theory, makes very
few assumptions on the plate configuration and was successfully
applied to highly anisotropic laminated plates under cylindrical
bending with various material configurations (Lebée and Sab,
2011b).

The aim of this paper is to apply this new plate theory to a
sandwich panel including the chevron pattern. It is organized as
follows. First, in Section 2, the Bending-Gradient plate theory is
summarized and the related homogenization scheme is provided.
Then the sandwich panel including chevron pattern is introduced
and details about implementation are given in Section 3. Results
and validation with a full 3D simulation are presented in Section
4, Finally, we bring out the interaction between skins and core.
The relevant parameters are identified and their influence in
sandwich panel design is discussed in Section 5.

2. The Bending-Gradient plate model and its homogenization
scheme

In this section, we first introduce the main features of the nota-
tions used in this article. Then the Bending-Gradient plate theory is
summarized. Finally the extension to periodic plates is performed
using energy equivalence.

2.1. Notations

Vectors and higher-order tensors are boldfaced and different
underlinings are used for each order: vectors are underlined, u.
Second order tensors are underlined with a tilde: M and e. Third
order tensors are underlined with a parenthesis: ® and I'. Fourth
order tensors are doubly underlined with a tilde: D and c. Sixth
order tensors are doubly underlined with a parenthe51s F “and 1.

When dealing with plates both 2-dimensional (2D) and 3D
tensors are used. Thus, T denotes a 3D vector and T denotes a 2D
vector or the in-plane part of T. The same notation is used for high-
er-order tensors: ¢ is the 3D second-order stress tensor while ¢ is
its in-plane part. When dealing with tensor components, the in-
dexes specify the dimension: a;; denotes the 3D tensor @ with Latin
index i, j, k,..= 1, 2, 3 and a,; denotes the 2D tensor a “with Greek
indexes o, 8, 7,..=1, 2.

The transpose operation " is applied to any order tensors as fol-
lows: (tA)a,;_ Yo =Awvy.. ot Three contraction products are defined,
the usual dot product (@ - b = a;b;), the double contraction product
(a: 13 = a;;b;;) and a triple contraction product (A ... B = Ay,B;.).
Einstein’s notation on repeated indexes is used in these definitions.
The derivation operator V is also formally represented as a vector
a-V =a;V; = ay; is the 3D divergence and a ®V = a5V, = dyg,
the 2D gradient. Here ® is the dyadic product

2.2. Summary of the Bending-Gradient model (macro scale)

We consider a linear elastic plate which mid-plane is the 2D do-
main o c R%. Cartesian coordinates (x;,x2,X3) in the reference
frame (e,,e,, e;) are used to describe macroscopic fields. The plate
is loaded exclusively with the out-of-plane distributed force p =
p;@;. At this stage, the microstructure of the plate is not specified.

The membrane stress N,;, the bending moment My, and shear
forces Q, are the usual generalized stresses for Reissner-Mindlin
plates. Both N and M follows the symmetry of stress tenors:
Nys=Ngy and M,z =Mjg,. Moreover, we introduce an additional
static unknown: the gradient of the bending moment
R =M ®V = M,g,. The 2D third-order tensor R complies with the
following symmetry: Ra,;y—R,;w It is possible to derive shear
forces Q from Rwith: Q =i .. R <= Q, = Ry. Here i is the iden-
tity for in-plane elast1c1ty 11/;,0 =1 (8uyBps + Sus0py), where Sop 1S
Kronecker symbol (d,5=1 if a=p, d,5=0 otherwise). The full
bending gradient R has six components whereas Q has two compo-
nents. Thus, using the full bending gradient as static unknown
introduces four additional static unknowns. More precisely: R;1q
and Ry, are respectively the cylindrical bending part of shear
forces Q; and Q,, Ri2; and R;y; are respectively the torsion part
of these shear forces and R;;; and Ryy; are linked to strictly
self-equilibrated stresses.

The main difference between Reissner-Mindlin and
Bending-Gradient plate theories is that the Bending-Gradient plate
theory enables the distinction between each component of the
gradient of the bending moment whereas they are mixed into
the shear forces with Reissner—-Mindlin theory. In the case of highly
anisotropic laminated plates this distinction is critical for deriving
good estimate of the deflection and local transverse shear distribu-
tion through the thickness (Lebée and Sab, 2011b).
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