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a b s t r a c t

A solution for the finite-domain Eshelby-type inclusion problem of a finite elastic body containing a plane
strain inclusion prescribed with a uniform eigenstrain and a uniform eigenstrain gradient is derived in a
general form using a simplified strain gradient elasticity theory (SSGET). The formulation is facilitated by
an extended Betti’s reciprocal theorem and an extended Somigliana’s identity based on the SSGET and
suitable for plane strain problems. The disturbed displacement field is obtained in terms of the SSGET-
based Green’s function for an infinite plane strain elastic body, which differs from that in earlier studies
using the three-dimensional Green’s function. The solution reduces to that of the infinite-domain inclu-
sion problem when the boundary effect is suppressed. The problem of a cylindrical inclusion embedded
concentrically in a finite plane strain cylindrical elastic matrix of an enhanced continuum is analytically
solved for the first time by applying the general solution, with the Eshelby tensor and its average over the
circular cross section of the inclusion obtained in closed forms. This Eshelby tensor, being dependent on
the position, inclusion size, matrix size, and a material length scale parameter, captures the inclusion size
and boundary effects, unlike existing ones. It reduces to the classical elasticity-based Eshelby tensor for
the cylindrical inclusion in an infinite matrix if both the strain gradient and boundary effects are not con-
sidered. Numerical results quantitatively show that the inclusion size effect can be quite large when the
inclusion is very small and that the boundary effect can dominate when the inclusion volume fraction is
very high. However, the inclusion size effect is diminishing with the increase of the inclusion size, and the
boundary effect is vanishing as the inclusion volume fraction becomes sufficiently low.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Eshelby’s eigenstrain method and fourth-order strain transfor-
mation tensor (Eshelby, 1957, 1959) play a key role in homogeni-
zation methods for heterogeneous materials (e.g., Hill, 1965;
Budiansky, 1965; Mori and Tanaka, 1973; Weng, 1990; Huang
et al., 1994; Le Quang and He, 2007; Genin and Birman, 2009).
However, the Eshelby tensor in its original form (Eshelby, 1957,
1959) is based on classical elasticity and cannot account for the par-
ticle (inclusion) size effect experimentally observed in some com-
posites filled with micro- and nano-particles (e.g., Vollenberg and
Heikens, 1989; Reynaud et al., 2001; Cho et al., 2006). Moreover,
this classical Eshelby tensor is for an inclusion embedded in an infi-
nite elastic matrix and is unable to incorporate the effect of finite
boundaries. As a result, the homogenization methods employing
the classical elasticity-based Eshelby tensor cannot capture the
particle size and boundary effects. Hence, there has been a need
to obtain Eshelby’s tensor for an inclusion in a finite matrix using

higher-order (non-classical) elasticity theories, which, unlike classi-
cal elasticity, contain material length scale parameters and are
capable of explaining microstructure-dependent size (and other)
effects.

For the Eshelby-type inclusion problem of an infinite homoge-
neous isotropic elastic body containing an inclusion, a number of
studies have been conducted using various higher-order elasticity
theories, which include a micropolar theory (Cheng and He,
1995, 1997; Ma and Hu, 2006), a microstretch theory (Liu and
Hu, 2004; Kiris and Inan, 2006; Ma and Hu, 2007), a modified cou-
ple stress theory (Zheng and Zhao, 2004), a strain gradient theory
(Zhang and Sharma, 2005), and a simplified strain gradient theory
(Gao and Ma, 2009, 2010a,b; Ma and Gao, 2010a). These studies
have led to analytical solutions of the inclusion problem and re-
sulted in closed-form expressions of the Eshelby tensor for a spher-
ical or cylindrical inclusion in an infinite elastic body based on
higher-order elasticity theories.

On the other hand, for the problem of an inclusion embedded in
a finite homogeneous isotropic elastic matrix, only a few analytical
studies have been performed even in the context of classical elastic-
ity. The first one was provided by Kinoshita and Mura (1984). They
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proved the existence and uniqueness of a second-order Neumann
tensor, which reduces to the Green’s function (also a second-order
tensor) when the body is unbounded. The use of the Neumann ten-
sor would give the solution of an inclusion problem in a bounded
elastic body. However, the determination of this Neumann tensor
for a bounded elastic body is rather challenging, and only the Neu-
mann tensor for a half space was provided in Kinoshita and Mura
(1984). More recently, Li et al. (2005, 2007) analytically obtained
the Eshelby’s tensors for a two-dimensional (2-D) finite-domain
circular inclusion problem and a three-dimensional (3-D) finite-
domain spherical inclusion problem using Somigliana’s identity
and Green’s functions in classical elasticity.

The first study on finite-domain inclusion problems based on a
higher-order elasticity theory has recently been reported by Gao
and Ma (2010a), where a simplified strain gradient elasticity the-
ory (SSGET) (e.g., Gao and Park, 2007) is used and the problem of
a spherical inclusion embedded concentrically in a finite spherical
elastic body is analytically solved. The solution of this finite-do-
main inclusion problem is obtained using the SSGET-based 3-D
Green’s function derived in Gao and Ma (2009) and includes the
solution for its counterpart infinite-domain inclusion problem
published earlier as a limiting case.

The current study aims to provide the solution for the finite-
domain Eshelby-type inclusion problem of a finite homogeneous
isotropic elastic body containing a plane strain inclusion prescribed
with a uniform eigenstrain and a uniform eigenstrain gradient using
the SSGET. The present solution utilizes the SSGET-based Green’s
function for a plane strain elastic body, which differs from the 3-D
Green’s function used in Gao and Ma (2010a) for the finite-domain
spherical inclusion problem and in Ma and Gao (2010a) for the
infinite-domain plane strain and cylindrical inclusion problems.

The rest of the paper is organized as follows. In Section 2, the
SSGET is first reviewed, which is followed by the derivation of a
general solution for the finite-domain Eshelby-type plane strain
inclusion problem using an extended Betti’s reciprocal theorem
and an extended Somigliana’s identity based on the SSGET and
suitable for plane strain problems. The finite-domain cylindrical
inclusion problem is solved in Section 3 by applying the general
formulas derived in Section 2, which leads to closed-form expres-
sions of the Eshelby tensor and its area average. In Section 4, sam-
ple numerical results are presented to quantitatively show the
dependence of the components of the Eshelby tensor and its aver-
age obtained in Section 3 on the position, inclusion size, and inclu-
sion volume fraction, where the size and boundary effects are
observed and discussed. The paper concludes in Section 5 with a
summary and some remarks.

2. Solution for a plane strain inclusion in a finite domain

2.1. Simplified strain gradient elasticity theory (SSGET)

The SSGET is the simplest strain gradient elasticity theory
evolving from Mindlin’s pioneering work (Mindlin, 1964, 1965;
Mindlin and Eshel, 1968). It is also known as the first gradient elas-
ticity theory of Helmholtz type and the dipolar gradient elasticity
theory (Gao and Ma, 2010a). According to this theory, the strain
energy density function, w, for an isotropic linearly elastic material
has the form (e.g., Gao and Park, 2007; Gao and Ma, 2010b):

w ¼ wðeij;jijkÞ ¼
1
2

keiiejj þ leijeij þ L2 1
2

kjiikjjjk þ ljijkjijk

� �
; ð1Þ

where k and l are the Lamé constants in classical elasticity, L is a
material length scale parameter, and eij and jijk are, respectively,
the components of the infinitesimal strain, e = eijei � ej, and the
strain gradient, j � $e ¼ jijkei � ej � ek, given by

eij ¼
1
2
ðui;j þ uj;iÞ; jijk � eij;k ¼

1
2
ðui;jk þ uj;ikÞ; ð2a;bÞ

with ui being the components of the displacement vector u = uiei.
The constitutive equations are obtained from Eq. (1) as

sij ¼
@w
@eij
¼ kelldij þ 2leij ¼ Cijklekl ¼ sji; ð3Þ

lijk ¼
@w
@jijk

¼ L2 kelldij þ 2leij
� �

;k ¼ L2Cijmnjmnk ¼ L2sij;k ¼ ljik; ð4Þ

where sij are the components of the Cauchy stress, s = sijei � ej, lijk

are the components of the double stress, l = lijkei � ej � ek, dij is the
Kronecker delta, and Cijkl are the components of the elastic stiffness
tensor for isotropic elastic materials given by Cijkl = kdijdkl +
l(dikdjl + dildjk).

The equilibrium equations are

rij;j þ fi ¼ 0; ð5Þ

where fi are the components of the body force, and rij are the com-
ponents of the total stress, r = rijei � ej, which are related to the
Cauchy stress components sij through

rij � sij � lijk;k ¼ sij � L2sij;kk: ð6Þ

Using Eqs. (2a,b)–(4) and (6) in Eq. (5) leads to the Navier-like
displacement-equations of equilibrium as

ðkþ lÞui;ij þ luj;kk � L2 ðkþ lÞui;ij þ luj;kk
� �

;mm þ fj ¼ 0 in X; ð7Þ

where X is the region occupied by the elastic material.
The complete boundary conditions, determined simultaneously

with the equilibrium equations listed in Eq. (5) using a variational
formulation (Gao and Park, 2007), have the form:

ti ¼ �ti or ui ¼ �ui;

qi ¼ �qi or ui;lnl ¼ @ui
@n

)
on @X; ð8a;bÞ

with

ti ¼ rijnj � lijknk

� 	
;j
þ lijknknl

� 	
;l
nj; qi ¼ lijknjnk; ð8c;dÞ

where ti and qi are, respectively, the components of the Cauchy trac-
tion vector and double stress traction vector, @X is the smooth
bounding surface of X, and ni is the outward unit normal vector
on @X. In Eqs. (8a,b), the overbar represents the prescribed value.
Note that the standard index notation, together with the Einstein
summation convention, is used in Eqs. (1)–(8a–d) and throughout
this paper, with each Latin index (subscript) ranging from 1 to 3
and each Greek index ranging from 1 to 2, unless otherwise stated.

Eqs. (7) and (8a,b), along with Eqs. (2a,b)–(4) and (6), define the
boundary value problem in terms of displacement in the SSGET.
Clearly, the material length scale parameter L is explicitly involved
in Eq. (7) in addition to the two Lamé constants k and l. When the
strain gradient effect is absent (i.e., L = 0), it follows from Eq. (4)
that lijk = 0 and from Eq. (6) that rij = sij. As a result, Eqs. (7) and
(8a,b) reduce to the governing equations and the boundary
conditions in terms of displacement in classical elasticity (e.g.,
Timoshenko and Goodier, 1970; Gao and Rowlands, 2000).

For an infinite elastic body loaded by a unit concentrated force,
Eq. (7), subject to the boundary conditions of u and its first-, sec-
ond- and third-order spatial derivatives vanishing at infinity, has
been solved in Gao and Ma (2009) by using Fourier transforms to
obtain the SSGET-based 3-D Green’s function expressed in terms
of elementary functions. This Green’s function has been subse-
quently used to solve several inclusion problems involving an infi-
nite or a finite 3-D elastic body containing an inclusion (Gao and
Ma, 2009, 2010a,b; Ma and Gao, 2010a).
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