Contents lists available at ScienceDirect

Thermochimica Acta

journal homepage: www.elsevier.com/locate/tca

Short communication

Volumetric properties of amino acids in aqueous solution of nonionic surfactant

N.G. Harutyunyan^{a,b}, L.R. Harutyunyan^{a,*}, R.S. Harutyunyan^c

^a Department of Physical and Colloid Chemistry, Yerevan State University, A. Manoogyan 1, 0025 Yerevan, Armenia

^b Department of Chemistry, Vanadzor State Pedagogical University, Tigran Mets 36, 377200 Vanadzor, Armenia

^c Department of Inorganic Chemistry, Yerevan State University, A. Manoogyan 1, 0025 Yerevan, Armenia

ARTICLE INFO

Article history: Received 18 June 2009 Received in revised form 17 September 2009 Accepted 22 September 2009 Available online 30 September 2009

Keywords: Nonionic surfactant Amino acids Volumetric properties Volume of transfer

1. Introduction

Interactions of proteins with their surrounding environment play an important role in their conformational characteristics. The most important of those are between solute and solvent molecules [1]. The study of these interactions provides important insight into the conformational stability and folding/unfolding behavior of globular proteins [2]. Because proteins are large complex molecules, a direct study of protein–electrolyte interactions is difficult. It is therefore useful to investigate the solution behavior of compounds model such as amino acids, peptides and their derivatives that constitute part of the protein structures [3–6].

Surfactants are largely employed in pharmaceutical [7,8] and biological [9,10] processes. In technological perspectives surfactant-protein interactions are very important because they regular the functional properties of proteins. Surfactant-amino acids interactions are largely studied in literature using conductivity [11,12], chromatography [11], circular dichroism [13], fluorescence [14,15] and direct calorimetry [16,17]. Interactions surfactants with proteins may lead to some changes of configurations and molecular characteristics of globular proteins. However, some details in the model of interactions of surfactants with proteins still remain unanswered. Therefore, it is very important to understand theory and the nature of surfactant-amino acid interactions both as qualitive and quantitative.

ABSTRACT

The volumetric properties of amino acids (DL-glycine, DL-alanine, DL-serine, L-aspartic acid, L-lysine, and L-leucine) in aqueous solution of nonionic surfactant hexadecyl poly[oxyethylene(25)] alcohol ($C_{16}A_{25}$) are studied. The values of apparent molar volumes V_{ϕ} , partial molar volumes $V_{2,m}^0$ and volumes of transfer $\Delta_{t_2}V_{2,m}^0$ are calculated. The changes of volumes of transfer are discussed in terms of hydrophilic–hydrophobic interactions. The linear correlation of $V_{2,m}^0$ for a amino acids is utilized to calculate the contribution of the charge groups (NH₃⁺, COO⁻), CH₂ group and other alkyl chains of amino acids to $V_{2,m}^0$.

© 2009 Elsevier B.V. All rights reserved.

The survey of the literature shows that the volumetric properties of amino acids are largely reported [2-6,18-33]. Although this many problems are not completely described yet.

In this paper the results of investigation of volumetric properties for system nonionic surfactant $C_{16}A_{25}$ -amino acid-water are reported and the volumes of transfer of amino acids from water to water solution of $C_{16}A_{25}$ are calculated. This parameter is discussed in terms of various interactions occurring in these solutions.

2. Experimental

Nonionic surfactant hexadecyl poly[oxyethylene(25)] alcohol $(C_{16}A_{25} - C_{16}H_{33}O(C_2H_4O)_{25}H)$ (Shebekino, Russia) was purified according [34]. The containing of pure substance in perfected samples is no less than 98%. Amino acids (DL-glycine, DL-alanine, DL-serine, L-aspartic acid, L-lysine and L-leucine) were synthesized in Biotechnology Institute of Armenia and used without further purification (>99.8%).

Densities of solutions were measured using a vibrating-tube digital densimeter DMA-4500 (Anton Paar, Austria) with precision of $\pm(5 \times 10^{-5}) \, \mathrm{g \, cm^{-3}}$. The solutions were thermostated with precision of $\pm 0.01 \, \mathrm{K}$. The densimeter was calibrated with dry air and pure water under atmospheric pressure.

3. Results and discussion

The densities ρ of system C₁₆A₂₅-amino acid-water in premicellar ($5 \times 10^{-5} \text{ mol } l^{-1}$) and post-micellar ($5 \times 10^{-4} \text{ mol } l^{-1}$) regions at 303 and 333 K are determined. The effect of amino acids

^{*} Corresponding author. Tel.: +374 93 519144; fax: +374 10 576421. *E-mail address:* lusinehar@ysu.am (L.R. Harutyunyan).

^{0040-6031/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.tca.2009.09.009

Table 1

Densities ρ and apparent molar volumes V_{ϕ} of system surfactant-amino acid-water by dependence on amino acid concentration.

$m (m molkg^{-1})$	T=303 K		<i>T</i> =333 K			
	$\rho({\rm gcm^{-3}})$	V_{ϕ} (cm ³ mol ⁻¹)	$\rho({\rm gcm^{-3}})$	V_{ϕ} (cm ³ mol ⁻¹		
$[C_{16}A_{25}] = 5 \times 1$ Glycine	$0^{-5} \text{ mol } l^{-1}$					
0.00000	0.99565	-	0.98319	-		
0.00106	0.99568	46.77672	0.98322	47.00293		
0.00216	0 99571	47 30379	0.98325	47 54366		
0.00270	0.99579	50 71671	0.98334	49 24117		
0.00374	0.99379	50.71071	0.96534	43.24117 52.26026		
0.01504	0.99567	36.29369	0.96546	0 20007		
0.04818	0.99582	/1./5609	0.98351	69.38897		
Alanine						
0.00077	0.99567	63.17748	0.98321	63.65058		
0.00161	0.99568	70.75317	0.98322	71.24334		
0.00346	0.99569	77.72380	0.98324	75.56859		
0.00562	0.99566	87.59302	0.98322	84.99690		
0.00817	0.99559	96.77070	0.98316	94.32315		
Serine						
0.00150	0.99571	65.10454	0.98326	58.51500		
0.00250	0.99574	69.13724	0.98329	65.40909		
0.00300	0.99575	71.82630	0.98330	68.85633		
0.00400	0.99578	72.66465	0.98332	73.16472		
Aspartic acid						
0.00188	0.99578	63.81827	0.98332	63.73184		
0.00752	0.99614	67.81752	0.98369	66.45777		
0.00940	0.99626	68.07748	0.98375	66.99958		
0.01222	0.99642	69.96372	0.98399	67.49484		
0.01598	0.99663	71.64686	0.98422	68.52371		
0.01880	0.99677	73.40234	0.98439	69.45845		
Lysine						
0.00036	0 99568	62 57290	0 98322	62 28706		
0.00069	0.99570	73 53584	0.08325	63 561 57		
0.000000	0.00574	90.94206	0.00220	66 02071		
0.00138	0.99574	00.04200	0.96530	00.02971		
0.00207	0.99575	93.02215	0.98335	68.52473		
0.00276	0.99578	99.11101	0.98340	69.77034		
Leucine						
0.00030	0.99567	64.32058	0.98317	64.27526		
0.00052	0.99568	73.37260	0.98322	66.92442		
0.00103	0.99570	82.59940	0.98325	72.97392		
0.00180	0.99572	92.33641	0.98327	87.25546		
$[C_{16}A_{25}] = 5 \times 1$	$0^{-4} mol l^{-1}$					
0.00000	0.00572		0.09226			
0.00000	0.99572	-	0.96520	-		
0.00154	0.99577	42.57298	0.98331	42.09224		
0.00872	0.99600	42.92358	0.98353	44.23815		
0.02095	0.99639	43.03699	0.98390	44.64984		
0.03082	0.99670	43.20838	0.98419	45.02287		
Alanine	0.00577	E9.0E610	0 00222			
0.00161	0.99577	58.05619	0.98332	51.90555		
0.00346	0.99580	66.05667	0.98337	57.62514		
0.00562	0.99584	67.83811	0.98341	62.89870		
0.00817	0.99586	72.08893	0.98346	65.18153		
Serine						
0.00100	0.99576	65.10411	0.98331	55.06782		
0.00200	0.99579	70.14492	0.98334	65.40871		
0.00300	0.99581	75.18908	0.98335	75.75050		
0.00400	0.99581	82.75010	0.98334	86.09382		
Aspartic acid	l					
0.00188	0.99585	63.81868	0.98339	63.73240		
0.00376	0.99597	66.49281	0.98351	66.47483		
0.00752	0.99621	67.81737	0.98374	69.20884		
0.00940	0.99633	68.07729	0.98385	70.30081		
0.01222	0.99650	69.13783	0.98401	71,72722		
0.01598	0.99672	70.38365	0.98421	73,70232		
0.01880	0.99687	71.78785	0.98434	75,76159		
5.01050	5.00007		5.55151			

Table 1 (Continued)

$m (\mathrm{mol}\mathrm{kg}^{-1})$	<i>T</i> =303 K		T=333 K	
	ρ (g cm ⁻³)	V_{ϕ} (cm ³ mol ⁻¹)	ρ (g cm ⁻³)	V_{ϕ} (cm ³ mol ⁻¹)
Lysine				
0.00050	0.99576	65.93570	0.98330	65.73579
0.00100	0.99580	65.93305	0.98334	65.73311
0.00250	0.99592	65.92510	0.98346	65.72425
0.00300	0.99596	62.92246	0.98350	65.72242
0.00400	0.99604	65.91716	0.98358	65.71707
Leucine				
0.00317	0.99593	64.73265	0.98347	64.69553
0.00871	0.99624	71.31001	0.98370	80.94267
0.02092	0.99674	82.30156	0.98405	94.09500
0.03614	0.99671	103.83038	0.98430	103.3558

The maximum uncertainty in the V_{ϕ} values is estimated to be not more than $\pm(5 \times 10^{-5}) \, \mathrm{cm^3 \, mol^{-1}}$.

on cmc of $C_{16}A_{25}$ has been studied by us earlier [12] and it has been shown that with increased of amino acids concentration the cmc of $C_{16}A_{25}$ decreases. Thus, the concentrations of surfactant are chosen in view of the influence of amino acids on micellization behavior of $C_{16}A_{25}$ and in the case of 5×10^{-5} mol l⁻¹ concentration the surfactant is only in the form of molecules and in the case of 5×10^{-4} mol l⁻¹ concentration surfactant molecules are in the form of micelles.

Based on values of densities the apparent molar volumes V_{ϕ} are calculated by the relation:

$$V_{\phi} = \frac{1000(\rho_0 - \rho)}{m\rho\rho_0} + \frac{M}{\rho}$$
(1)

where *M* and *m* are the molar mass and molality of solute, respectively, ρ and ρ_0 are the densities of solution and solvent, respectively. The values of densities and apparent molar volumes are given in Table 1.

In all cases the standard partial molar volumes $(V_{2,m}^0)$ are obtained by least-squares fitting to the following equation [35]:

$$V_{\phi} = V_{2,m}^0 + S_{\nu} \cdot m \tag{2}$$

where S_v is the experimental slope, which sometimes is considered with coefficient of volumetric pairwise interaction [36,37]. The values of standard partial molar volumes are given in Table 2. The values of $V_{2,m}^0$ are positive in all cases and show a linear variation with number of carbon atoms in the alkyl chain of amino acids. That linear variation is represented by relation [6,27,32,35,38,39]:

$$V_{2m}^{0} = V_{2}^{0}(\mathrm{NH}_{3}^{+}, \mathrm{COO}^{-}) + n_{C}V_{2}^{0}(\mathrm{CH}_{2})$$
(3)

where n_C is the number of carbon atoms in the alkyl chain of amino acids, $V_2^0(NH_3^+, COO^-)$ and $V_2^0(CH_2)$ are the zwitterionic end groups and the methylene group contribution to $V_{2,m}^0$, respectively. The values of $V_2^0(NH_3^+, COO^-)$ and $V_2^0(CH_2)$ are given in Table 3. But as the amino acids studied in this paper contain CH₂-(glycine), CH₂CH₂-(alanine), CH₂CH-(serine), (CH₂)₄CH-(lysine), (CH₃)₂CH₂(CH)₂-(leucine) groups too, from values of $V_2^0(CH_2)$ the contribution of CH– and CH₃– groups are calculated. As suggested by Hakin et al. [40,41], the contribution of the other alkyl chain of the amino acids are calculated as follows:

$$V_2^0(CH_3) = 1.5 \ V_2^0(CH_2) \tag{4}$$

$$V_2^0(CH) = 0.5 \ V_2^0(CH_2) \tag{5}$$

and reported in Table 3. As shown in Table 3, the values of V_2^0 (NH₃⁺, COO⁻) are higher than V_2^0 (CH₂), which indicates that interactions between zwitterionic groups and molecules (micelles) of C₁₆A₂₅ are stronger than hydrophobic interactions between alkyl groups and molecules (micelles) of C₁₆A₂₅ [32].

Download English Version:

https://daneshyari.com/en/article/674993

Download Persian Version:

https://daneshyari.com/article/674993

Daneshyari.com