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This paper presents the results of theoretical and experimental investigations on the statistical size effect (SSE) of
flexural members in steel. The chain of bundlemodel is developed, which is based on a stochasticmaterial model
by Weibull and lognormal distribution. Furthermore, this model is embedded into the finite element method
(FEM) software for the analysis of a complicated structure with a stress gradient. In order to determine the sto-
chastic material model parameters, uniaxial tensile tests were carried out based on specimens using the same
steel with different sizes. By comparing the experimental and simulation results, the material parameters
could be analyzed based on the relationship between the specimen sizes and strength. Moreover, the 3-point
and 4-point bending tests were performed and simulatedwith the developedmodel. The experimental and sim-
ulation results demonstrate that the SSE also exists in the flexural member, and the equivalent yield stress is
closely related to the stress distribution and volume of the structure component.
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1. Introduction

In the past several decades, the question has been raised by reliabil-
ity analysis research, whether the material strength can be affected by
the structure volume [1–4]. Previous research reported that the size ef-
fect can be described by two fundamentally different approaches,
namely deterministic and statistical explanations. Most researchers
have focused on the size effect on the energetic basis, and this purely de-
terministic size effect has been extensively studied [5,6]. Traditionally,
the statistical size effect has been explained by Weibull-type statistical
weakest link model [7], where the material strength is dependent on
the weakest member. The basic hypothesis is that the structure will
fail as the stress exceeds thematerial strength at any point.Weibull dis-
tribution, which is based on the weakest link model, has been widely
applied to brittle material owing to its simple form and relative precise-
ness [8,9]. However, recent research has indicated that the SSE based on
Weibull distribution for rock, concrete and other quasi-brittle material
should be corrected [10].

The SSE of steel structureswasmentioned decades ago [2]. However,
currently researches in this area are rare. This is due to the fact that the
SSE in steel structures is not as prominent as in concrete since the
strength variability of steel is relatively small. Moreover, most of the
components in the steel structure are plate-type and not bulk-type,
and some studies have focused on the relationship between strength
and material thickness. For example, Fig. 1a) shows that the material
yield strength decreases with increasing material thickness. Thus, the

material strength is graded by thickness in Fig. 1b), but this method ig-
nores the influence of the tensile specimen size. Hence, the graded ma-
terial strength according to the thickness strength in the reference [11]
and design code [12] covers the SSE phenomenon. Theoretically, all ma-
terials are imperfect and consist of defective structures on amicroscopic
scale. The distribution of defects on the microscale determines the ma-
terial strength on the macroscale. Because of the randomly distributed
sliding surfaces and other mechanical defects in materials, it is possible
to study the SSE by means of statistical methods. Recently, the SSE in a
steel structure was demonstrated by experiments [13]. Moreover, the
results of [14] indicated that the influence of the SSE on the reliability
of steel structures cannot be ignored.

Generally, flexural strength is determined based on tensile strength,
according tomechanicalmethods using the plastic theory. Because steel
is regarded as an ideal body, the microscopic structure imperfections
and real stress distributions in the structure component cannot be con-
sidered. Theoretically, the stochastic finite element method with corre-
lated random fields can be used to analyze the SSE in steel caused by the
material's microstructure imperfection [14]. However, the estimation of
the random field parameters, e.g. coefficient of variation and correlation
length, and the efficiency of this approach for nonlinear materials limit
the large-scale application of the stochastic finite element method.
The stochastic material model provides a possible means of estimating
the influence of the stress gradient and stressed volume on strength.
This paper aims to describe the SSE using a proposed stochasticmaterial
model that is based on the existing material models as well as probabil-
ity theory. Furthermore, the model is programmed using User Subrou-
tines in ABAQUS to describe the SSE in flexural members and complex
structures.
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2. Stochastic material models

Theoretically, artificially manufactured materials such as steel are
not completely isotropic and homogeneous, and contain variousmicro-
structure imperfections. Currently, the prediction of failure of structural
elements based onmicrostructural analysis, such as Gurson-Tvergaard-
Needleman (GTN) material model [15], is widely mentioned and stud-
ied. However, these researches did not deal with the link between the
randomness of the underlying microstructure imperfections and the
probability distribution of material properties at macroscopic scale.
The material properties are affected by the structural size, since the
size, quantity and corresponding distribution of microstructure imper-
fections are changed as the structural volume increases. From a statisti-
cal point of view, increased defects can lead to a greater probability of
failure under the same stress conditions; that is the strength decreases
as the failure probability remains unchanged. According to certain sim-
plified assumptions of the strength on the microscale, the macroscopic
material strength can be obtained by using a stochastic material
model with probability and statistical methods. This method, based on
the strength of the statistical theory, avoids the difficulty of researching
the material microstructure.

Steel is not an ideal elasto-plastic material and the post-peak behav-
iors of steel after the elastic limit is harder to analyze as the dislocations
in the crystalline structure startmoving after the yield point [16]. There-
fore, the two classical models based on limiting states for probabilities
[17], namely the weakest link model proposed by Weibull [7] and the
fiber bundle model by Daniels [18], cannot describe real material prop-
erties clearly and precisely [19]. As an alternative approach [20], real
materials can be described using the chain of bundle model [21,22],
which is based on both the classical models.

The chain of bundle model, depicted in Fig. 2, is composed of N rep-
resentative volume elements (RVEs) of n parallel reference elements in
a chain. An RVE is defined as the smallest material element, whose fail-
ure can cause destruction of the entire structure. If the RVE can result in
total failure, the structure can be simplified as an RVE chain. It is as-
sumed that the element number of the parallel system is infinite; the
statistics of the respective parallel system can be analyzed and follow
a normal distribution. For a large coefficient of variation, the normal dis-
tribution should be replaced by a logarithmic normal distribution to re-
duce the heterogeneity variance of the material property and prevent
negative strength. It is assume that the failure probabilities of the RVE
are statistically uncorrelated. For the chain of bundle model, the

probability of failure, or cumulative distribution function, is expressed
as follows:
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where∅(∗) is the distribution function of the standard normal distribu-
tion; ξ is thematerial constant;σu is the lower limit ofσ andσ N σu;σ0 is
a scale parameter of strength.

Eq. (1) provides a continuous transition between the Weibull
weakest link model and Daniel's parallel bundle models; it is purely
phenomenological and not based on any physical models. The failure
probability density function approximates to a lognormal distribution
if the entire specimen volume is extremely small; that is V/VRVE → 1.

Fig. 1. a) Relation between yield stress and material thickness, b) the probability distribution of the strength of the steel graded according to the thickness, from [11].

Fig. 2. Chain of bundle model.
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