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The global stability of a spatial structure is usually analysed via a nodal load-displacement curve (NLDC). Howev-
er, the globalmechanical properties of a structure can hardly be reflected comprehensively by specificNLDCs, and
no criterion is available to select the representative node for getting the most reasonable NLDC. In this paper, a
scalar parameter derived from the incremental equilibrium equation of nonlinear stability analysis, named
Eigen-stiffness, is defined to characterize the global structural stiffness. The Structural Eigen-curve (SEC), based
on Eigen-stiffness, is proposed to depict the equilibrium path. Two types of extreme points on SEC are defined
to determine the critical state of the structure, including the structural limit state and the structural snap-back.
Firstly, the stability of a hinge-supported planar arch is analysed to introduce the SEC concept. Then a K6 reticu-
lated shell is designed to give further understanding. Subsequently, practical application of the SEC is illustrated
in the stability analysis of a roof structure, namely, Shanghai International Conference Centre. In addition, a para-
metric study on a K6 reticulated shell is carried out, based on the Eigen-stiffness and the SEC, to investigate the
effects of the rise to span ratio and the geometric imperfection amplitude on the structural stiffness and the struc-
tural load-carrying capacity. The results demonstrate that the ultimate load-carrying capacity obtained from the
SEC is equal to that from NLDC. More importantly, unlike NLDC, the SEC — free from node selection — can effi-
ciently capture the features of global structural behaviour and the evolution of structural stiffness.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Ensuring static global stability is one of themost important issues in
the structural design of spatial structures. Research on the stability of
spatial structures has been conducted for decades, and plenty of results
have been obtained, including nonlinear iteration methods [1–3], ex-
perimental tests [4–5], and numerical analysis results [6]. The stability
of both typical-shaped structures (spherical shell [7], cylindrical shell
[8], conical shell [9], etc.) and non-typical-shaped structures (inverted
catenary cylindrical shell [10], barrelled shell [11], and egg-shaped
shell [12], etc.) is still a hot topic and has been studied continually
[13–16]. Generally, static global stability analyses include linear buck-
ling analysis, geometrically and materially nonlinear analysis for both
perfect and imperfect structures. For linear buckling analyses, the buck-
ling factor of a given structure can be easily obtained via eigenvalue
analysis. For nonlinear stability analyses, two main problems are in-
volved: (i) how to capture the equilibrium point in nonlinear iteration;
and (ii) how to explicitly depict the equilibrium path. For the former
problem, several numerical methods have been proposed, including
the most popular Newton-Raphson method (N-R method). However,

the N-R method is limited in tracing the post-buckling path of a struc-
ture due to the singularity of the tangent stiffnessmatrix at the ultimate
point. The arc-length method (A-L method) proposed by Riks [17] and
modified by Crisfield [18] effectively solved the singularity-related
problem in nonlinear iteration. To date, the A-L method is themost sta-
ble and efficient numerical method for tracing the full-range equilibri-
um path of a spatial structure in static stability analysis.

For problem (ii), the nodal load-displacement curve (NLDC) has
been widely used. However, there is no valid criterion for selecting the
representative nodes. The selection of representative nodes is usually
based on the engineer's experience, commonly, the node with maxi-
mum displacement is chosen as the representative one [19]. Although
the NLDC is widely used, several problems with NLDCs cannot be
avoided: Is the node with maximum displacement always suitable for
analysing the evolution of structural mechanical property? Since differ-
ent NLDCs may give different features of a determined load-carrying
process [20–21], which of these NLDCs is more reasonable for depicting
the structural behaviour? Obviously, the NLDC just provides the ulti-
mate load factor without other global information and only reflects
the behaviour of local structures around the selected node, instead of
the global structural behaviour. For a global point of view, not only the
ultimate load factor should be concerned, but also the structural me-
chanical behaviour and some critical states in whole load-carrying
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process, like structural stiffening and softening, as well as dramatically
changing in structural stiffness, etc. Due to the direct influence of struc-
tural stiffness on the structural stability, many studies focused on the
structural stiffness [22–27]. For reticulated shell, based on the assump-
tion of equivalent continuum [22], the global structural stiffness was
proposed as equivalent stiffness [22–23] which would be computed
from the equivalent bending stiffness and equivalent membrane thick-
ness [28]. As equivalent stiffness is determined by the initial state of a
structure, it does not change during the load-carrying process. For this
reason, current stiffness parameter (CSP) was suggested to characterize
the global behaviour in the solution process [24]. According to CSP, it
can be inferred from the value of CSP that whether the structure is soft-
ening or stiffening [29]. As the value of CSP tends to zero, the structure
becomes unstable. However, the CSP is a dimensionless quantity that
cannot reflect the influence of various structural parameters, such as
geometric parameters, on structural stiffness. Therefore, this quantity
is generally used to determine travel directions in path following
[30–31]. Based on the concept of CSP, Xiang et al. derived an energy-
based stiffness parameter to describe the structural stiffness of latticed
arches [25]. In their further studies, this parameter was extended to in-
corporate structural vibrating properties, and was used for establishing
the simplified dynamic models of complex cable net curtain walls [26]
and steel roofs [27]. But the parameter proposed by Xiang et al. is
established using vibrating-mode-proportioned loads, which is certain-
ly not suitable for structural stability analysis. As a matter of fact, the
structural stiffness is related to a number of structural parameters
(rise to span ratio, amplitude of imperfection, etc.), thus the structural
sensitivity to these parameters is also an important aspect in stability
analysis [20,32]. Unfortunately, the effect of these parameters are just
reflected by ultimate load factor and their effects on structural mechan-
ical properties (structural stiffness, structural behaviour, etc.) are not
addressed.

The present study aims to find a stiffness-related parameter that can
characterize the global mechanical behaviour of structures and quantify
the effect of various structural parameters in stability analysis. In doing
so, a new scalar parameter defined as Eigen-stiffness is derived from the
equilibrium equation in the present study, providing a quantitative and
continuous measure for describing global structural stiffness. Subse-
quently, the Structural Eigen-curve (SEC) is proposed and its properties
are illustrated in detail. Two numerical models are designed to show
the advantages of the SEC and a parametric study on the K6 shell was
conducted.Moreover, stability analysis for a practical engineering appli-
cation was carried out using the Eigen-stiffness and SEC. The final sec-
tion summarizes the results and conclusions.

2. Basic theory for Eigen-stiffness

2.1. Definition of Eigen-stiffness

In nonlinear structural analysis, the relationship between the incre-
mental displacement and the incremental load is generally established
by the incremental equilibrium equation as follows:

KTΔU ¼ ΔP ð1Þ

where KT is tangent stiffness matrix, ΔU is incremental displacement
vector, ΔP is incremental load vector. For a generic iteration step i, the
incremental equilibrium equation can be written as

KTiΔU i ¼ ΔPi ð2Þ

As the applied load is a conservative force, the incremental load can
be expressed as

ΔPi ¼ Δχiφ ð3Þ

where Δχi is the incremental load factor in the i-th iteration step, φ is
the load pattern mode.

Multiply each side of Eq. (2) by the transpose of ΔUi

ΔUT
i KTiΔU i ¼ ΔUT

i ΔPi ð4Þ

transform the left side of Eq. (4) as

ΔUT
i KTiΔU i

ΔUT
i ΔU i

ΔUT
i ΔU i ¼ ΔUT

i ΔPi ð5Þ

and then define the Eigen-stiffness as k⁎

k�i ¼
ΔUT

i KTiΔU i

ΔUT
i ΔU i

ð6Þ

Δu�
i ¼ ΔUT

i ΔU i ð7Þ

Δp�i ¼ ΔUT
i ΔPi ð8Þ

where ki⁎ is the Eigen-stiffness in accordance with iteration step i. By
substituting Eqs. (6), (7), and (8) into Eq. (5), Eq. (5) can be transformed
into the following form:

k�i � Δu�
i ¼ Δp�i ; k�i ¼ Δp�i =Δu

�
i ð9Þ

where Δui⁎ and Δpi⁎ are the incremental Eigen-displacement and the in-
cremental work in accordance with iteration step i, respectively. Ac-
cording to the transformation of Eq. (9), k⁎ is equal to the ratio of Δp⁎
to Δu⁎ in each iteration step, wherein Δp⁎ and Δu⁎ are calculated
based on the load vector ΔP and the displacement vector ΔU (see
Eqs. (7) and (8)). Since ΔP and ΔU can be directly outputted from
FEA software, the Eigen-stiffness could be easily obtained by Eq. (9)
via computer programming of MATLAB post-process.

According to Eq. (6), it can be found that k⁎ is related to the tangent
stiffness matrix and does not rely on specific nodal displacement. The
dimensions of k⁎ are the same as that of the conventional stiffness,
and the value of k⁎ is numerically equal to thework doneby incremental
load ΔP on the condition of Δu⁎= 1. In the eigenspace of tangent stiff-
nessmatrix, when the angle betweenΔP andΔU is b90°, thework done
by ΔP is positive (Fig. 1a), and so is k⁎; when the angle is N90°, both the
work and k⁎ are negative (Fig. 1b). If the incremental load factor Δχ is
equal to zero, ΔP is actually transferred to the zero vector and k⁎ is
equal to zero (Fig. 1c). In this case, the structure is in a critical state, bet-
ter known as the limit state. However, it should be noted that the value
of k⁎ is also equal to zero when ΔP is perpendicular to ΔU (Fig. 1d), in
which another critical state occurs, called structural snap-back. There-
fore, the condition of k⁎ = 0 is a necessary but insufficient condition
to determine whether the structure is in the limit state or not.

2.2. Eigen-stiffness and tangent stiffness matrix

2.2.1. Spectral decomposition of KT

Suppose that the eigenvalue ofKT is λn and the corresponding eigen-
vector is ϕn. The characteristic equation of KT can be written as follows:

KTϕn ¼ λnϕn n ¼ 1;2;…;Nð Þ ð10Þ

By sorting the eigenvalue λn (n = 1,2, …,N) in ascending order as
λ1 ≤ λ2 ≤ … ≤ λN, the tangent stiffness matrix KT can be converted as

KT ¼ ΦΛΦ−1 ð11Þ

Λ ¼
λ1 0

λ2
⋱

0 λN

2
664

3
775 ð12Þ
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