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a b s t r a c t

Recently, a four-dimensional lattice spring model (4D-LSM) was developed to overcome the Poisson’s
ratio limitation of the classical LSM by introducing the fourth-dimensional spatial interaction. In this
work, some aspects of the 4D-LSM on solving problems in geomechanics are investigated, such as the
ability to reproduce elastic properties of geomaterials, the capability of solving heterogeneous problems,
the accuracy on modelling stress wave propagation, the ability to solve dynamic fracturing and the
parallel computational efficiency. Our results indicate that the 4D-LSM is promising to deal with prob-
lems in geomechanics.
� 2018 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Rock, concrete and soil are the main research subjects in geo-
mechanics, which are commonly involved in various engineering
activities, such as mining, tunnelling and underground engineer-
ing. Mechanical responses of these materials are the most concerns
for researchers (Dai et al., 2010; Brown, 2015; Feng et al., 2016). For
decades, the predecessors, e.g. Dr. K. Terzaghi, Dr. E. Hoek and Dr.
E.T. Brown, have made fruitful works. However, some fundamental
problems are still unclear. For example, an accurate constitutive
model for deformation and a rational model (Liu and Carter, 2002)
for three-dimensional (3D) crack propagation (Ingraffea, 1987;
Yang et al., 2017) are still under exploring. These fundamental
questions are directly related to major engineering safety issues,
e.g. tunnel collapse, slope instability, rockburst, and nuclear waste
leakage. Geomaterials are usually heterogeneous and their me-
chanical responses are highly nonlinear, which made them too
difficult to be described through pure analytical study. With the
development of the computer science, especially the rapid advance
of high-performance computing, numerical modelling provides a
promising alternative solution for geomechanical researchers.
Compared with the theoretical analysis, it is able to consider the
complex geometries, the dynamic processes and the nonlinear

constitutive responses involved in the related geotechnical phe-
nomena. Compared with the experimental methods, numerical
modelling is capable of performing a large number of parameter
analyses with reasonable time and relatively low cost. Although
many researchers still have doubts on the ability of the numerical
modelling to solve practical engineering problems, the numerical
simulation seems to be the only feasible solution to understand the
complex geotechnical problems. For example, when a geotechnical
hazard occurs, the numerical modelling is helpful to find the actual
reason through reproducing the observed results with parametric
analysis. Actually, Dr. E.T. Brown said that a breakthrough of
computational methods for geomechanics is the most promising
way to solve various hard problems faced in the actual geotechnical
engineering.

Since the 1950s, many computational methods have been
developed (Jing, 2003; Zhu and Tang, 2006; He et al., 2014; Lisjak
and Grasselli, 2014). The finite element method (FEM) is a typical
technology that was firstly developed in the engineering applica-
tion and then theoretically completed by mathematicians. Its
development has experienced the initial popular, the middle
trough, and the final mature (a typical growth curve of science and
technology). Success of the commercial software of the FEM makes
its usage quite convenient. For example, the ANSYS and ABAQUS are
widely used in the geomechanics and geotechnical engineering. In
addition to the FEM, the discrete element model (DEM) is another
well-known computational method in the geomechanics, which
was originally developed to solve the progressive failure and
movement of rock masses (Cundall, 1971). Now, it has been widely
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used in many disciplines such as material science and chemical
engineering (Zhao, 2015). In recent years, the scientific commu-
nities are interested in the DEM due to its ability to simulate high
complex phenomena. Besides, due to its bottom-up philosophy, the
basic principle of the DEM is very intuitive and easy to understand
(Chen and Zhao, 1998). Similar to the DEM, the lattice spring model
(LSM) is a bottom-up computational method as well. However, its
intrinsic limitation on representing the full range of Poisson’s ratios
(Hrennikoff, 1941) restricts the development of this method. In
order to solve this problem, researchers have proposed many so-
lutions, e.g. the multi-body shear spring (Zhao et al., 2011) and the
nonlocal potential (Chen et al., 2014). In a recent work, this limi-
tation was further solved by introducing the fourth-dimensional
spatial interaction (Zhao, 2017).

In this paper, we explore the ability of the four-dimensional LSM
(4D-LSM) on solving specific geomechanical problems. We focus on
applying some aspects related to problems in geotechnical me-
chanics, e.g. the Poisson’s ratio, material inhomogeneity, wave
propagation, 3D failure, as well as computational efficiency and
parallelism. Its ability to naturally model heterogeneous problems
is demonstrated through a numerical simulation on a two-phase
bar compression problem. Capabilities of the 4D-LSM on stress
wave propagation are verified against an analytical solution for the
P-wave and S-wave propagations in one-dimensional bar problems.
Following this, the parallel computing efficiency and ability on
handling 3D fracturing of the 4D-LSM are compared with the par-
allel distinct LSM (DLSM) (Zhao et al., 2013). Finally, we summarise
and discuss the advantages and disadvantages of the 4D-LSM and
further possible development.

2. Four-dimensional lattice spring model (4D-LSM)

The original LSM developed by Hrennikoff (1941) is intrinsically
limited to solve elastic problems with a fixed Poisson’s ratio of 1/3.
Its 3D version is only able to handle problems with a fixed Poisson’s
ratio of 1/4. There are a number of solutions developed and a
consensus is reached that noncentral/nonlocal interaction has to be
introduced to solve the Poisson’s limitation of classical LSM.
Nevertheless, recently, it has been shown that it is possible to
overcome the Poisson’s limitationwith only central interaction, but
we have to consider the fourth-dimensional interaction. Because
our experience is based on the perception of the 3D space, it is hard
to directly image the 4D space. The concept of parallel world, a
common concept used in science fiction movies, is a straightfor-
ward way to explain the idea of the 4D-LSM. In the 4D-LSM, our
world is assumed as a hyper-membrane made up from our visual
3D world and an invisible parallel world. Fig. 1 illustrates the pro-
cess of building a 4D computational model. First, build up a 3D
lattice model and assign one additional dimension for each particle.
Then, make a copy of this 3Dmodel with an offset along the fourth-
dimensional direction (4D thickness). For regular cubic lattice, the
lattice configuration can be viewed through a tesseract (a 4D cube).
The interaction between two particles is given as

Fij ¼ kunnij (1)

where k is the spring stiffness, un is the deformation of the spring
and nij is the normal vector from particle i to particle j. Compared
with classical 3D-LSM, the only difference is that the force and
normal vectors have four components. In 4D-LSM, all springs rep-
resenting the 3D interaction share the same stiffness (k3D), whereas
different spring stiffnesses were assigned for the fourth-
dimensional interaction, which is characterised by a ratio l4D. To
reproduce the isotropic elasticity, spring stiffnesses of the 4D-LSM
have to be assigned through the following equation:

ka ¼ kb ¼ 4kg
�
3 ¼ l4Dk3D (2)

where ka, kb and kg are the specific fourth-dimensional stiffnesses.
In the 4D-LSM, the central finite difference method is used to solve
the system equation, which can be simply written as

€x ¼ F
m

(3)

where €x is the acceleration, F is the particle force, and m is the
particle mass. To obtain the static solution, the local damping
scheme can be used (Zhao, 2017). For elastic problems, there are
only two parameters, i.e. k3D and l4D, are needed in the 4D-LSM.
The following empirical equations were provided to link the
macroscopic elastic parameters (Zhao, 2017):

k3D ¼ 6V3DE
P

l23D;i
(4)

l4D ¼ �211:13493779n3 þ 162:84655851n2 � 55:42449719n

þ 6:92902211

(5)

where V3D is the volume of the corresponding represented 3D
model, l3D;i is the length of the 3D springs, E is the elastic modulus,
and n is the Poisson’s ratio. More details of the 4D-LSM can be found
in the work of Zhao (2017).

3. Numerical examples

3.1. Influence of 4D thickness on the elastic prosperities

For the construction of 4D-LSM, we can consider that there is a
parallel version of 3D-LSM in the fourth dimension using a parallel
world concept. The distance between the 3D model and its parallel
version is defined as 4D thickness ratio, which is a ratio of the
distance between two models to the lattice length of 3D lattice
(regular lattice). As shown in Fig. 1, the model has 8000 particles,
whose diameter is 1 mm and its elastic modulus is taken as 10 GPa.
A uniaxial compression test is conducted for themodel inwhich the
bottom surface is fixed in y direction and a loading velocity of
10 mm/s is applied on the upper surface. The calculation of elastic
modulus is expressed as

Fig. 1. A regular packed 4D-LSM for the uniaxial compression test to extract the elastic
properties.
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