
Journal of Sound and Vibration 433 (2018) 124–128

Contents lists available at ScienceDirect

Journal of Sound and Vibration

journal homepage : www.elsev ier . com/ locate / jsv i

Exceptional points in the thermoacoustic spectrum

Georg A. Mensah a, Luca Magri b,*, Camilo F. Silva c, Philip E. Buschmann d,
Jonas P. Moeck d,a

a Institut für Strömungsmechanik und Technische Akustik, Technische Universität Berlin, Berlin, Germany
b Engineering Department, University of Cambridge, Cambridge, UK
c Professur für Thermofluiddynamik, Technische Universität München, Munich, Germany
d Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway

a r t i c l e i n f o

Article history:

Received 17 April 2018

Revised 27 June 2018

Accepted 30 June 2018

Available online XXX

Handling Editor: A.V. Metrikine

Keywords:

Thermoacoustics

Defective eigenvalue

Eigenvalue sensitivity

Intrinsic thermoacoustic modes

a b s t r a c t

Exceptional points are found in the spectrum of a prototypical thermoacoustic system as the

parameters of the flame transfer function are varied. At these points, two eigenvalues and

the associated eigenfunctions coalesce. The system’s sensitivity to changes in the parameters

becomes infinite. Two eigenvalue branches collide at the exceptional point as the interaction

index is increased. One branch originates from a purely acoustic mode, whereas the other

branch originates from an intrinsic thermoacoustic mode. The existence of exceptional points

in thermoacoustic systems has implications for physical understanding, computing, modeling

and control.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

At exceptional points (EPs), at least two eigenvalues and the associated eigenfunctions coalesce, and the eigenvalue sensitiv-

ity with respect to changes in the parameters becomes infinite [1,2]. Interesting physical phenomena associated with EPs appear

across various disciplines from quantum mechanics through optics and acoustics [2–4]. To the best of the authors’ knowledge,

the role of exceptional points has not yet been explored in thermoacoustic systems, although points in the parameter space with

infinite sensitivity were discussed in a recent review article [5]. In this letter, we show that these points in the thermoacoustic

spectrum are exceptional, and that they can be found in a generic thermoacoustic system when two real parameters are varied.

1.1. Thermoacoustic instabilities

Thermoacoustic instabilities are a major challenge for the reliable operation of many technical combustion systems, as

reviewed by Ref. [5] and references therein. For most practical applications with low-Mach number combustion, thermoacoustic

phenomena can be modelled by an inhomogeneous Helmholtz equation, which reads

∇ ·
(

c2∇p̂
)
+𝜔2p̂ = −i𝜔(𝛾 − 1)̂̇q, (1)
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where 𝜔 is the complex frequency, c is the mean speed of sound, i2 = − 1, and 𝛾 is the heat-capacity ratio. p̂ and ̂̇q are the

Fourier-transformed fluctuations1 of acoustic pressure and heat release rate, respectively. Quantities are non-dimensionalized

with a characteristic length, speed of sound, and density. The heat release rate fluctuation is commonly related to a velocity fluc-

tuation at a reference position by a time-delay model [5], i.e. −i𝜔(𝛾 − 1)̂̇q = n exp(−i𝜔𝜏)∇p̂ ∣xref
, where the parameters n and

𝜏 are the interaction index and the time delay, respectively. The thermoacoustic stability problem is generally non-Hermitian

because of the flame response term and dissipative boundary conditions. On numerical discretization or travelling-wave decom-

position [5], thermoacoustic stability is governed by a nonlinear eigenvalue problem [6,7]

𝐋(𝜔;𝜺)p̂ = 0, (2)

where the vector 𝜺 ∈ ℝM contains M parameters related to, for example, the mean speed of sound, the geometry, the flame

response, and the boundary conditions. 𝐋 ∈ ℂN×N is an analytic function of 𝜺 and 𝜔 in some subdomain of ℝM × ℂ, where N is

the number of degrees of freedom of the discretized equations. For a given 𝜺, the stability of the linear system is characterized by

the eigenvalues 𝜔 = 𝜔r + i𝜔i , where 𝜔r ∈ ℝ is the angular frequency and −𝜔i ∈ ℝ is the growth rate of the linear oscillation.

With this convention, the system is linearly stable if 𝜔i > 0. The associated thermoacoustic mode shapes are provided by the

eigenvectors p̂ ∈ ℂN .

1.2. Eigenvalue classification

Eigenvalues can be classified according to their algebraic and geometric multiplicities, a and g. The algebraic multiplicity

is the eigenvalue’s multiplicity as a root of the dispersion relation, whereas the geometric multiplicity is the dimension of

the associated eigenspace, i.e. the number of linearly independent eigenvectors. An eigenvalue of (2) can be either semi-simple,

when a = g; or defective, when a > g. For the special case a = g = 1 an eigenvalue is called simple. Semi-simple eigenvalues

with g > 1 and defective eigenvalues are referred to as degenerate eigenvalues. Defective eigenvalues that are branch-point

singularities in the parameter space are called exceptional points (EPs). Eigenvalues of single-flame longitudinal thermoacoustic

systems are typically simple [5,8]. Systems with discrete rotational symmetry, such as annular and can-annular combustors,

feature semi-simple degenerate eigenvalues [6,9], with fewer simple eigenvalues.

1.3. Sensitivity at an exceptional point

Mathematically, in the neighborhood of an EP, the eigenvalue has a perturbation expansion in fractional powers of the param-

eter (Section II-2.2 in Ref. [1]), also known as Puiseux series. At an EP with a = 2 (hence g = 1), which is assumed in the

remainder of this letter, the change of the eigenvalue due to a perturbation to the i-th parameter, 𝜀i , reads

𝜔 = 𝜔EP +𝜔1

√
𝜀i − 𝜀i,EP + O

(
𝜀i − 𝜀i,EP

)
, 𝜀i → 𝜀i,EP, (3)

where 𝜔1 is a constant. Thus, the first-order sensitivity 𝜕𝜔∕𝜕𝜀i∣𝜔EP ,𝜺EP
with respect to any parameter, 𝜀i, is infinite2 [2] because

(𝜔 − 𝜔EP)∕(𝜀i − 𝜀i,EP) → ∞ as 𝜀i → 𝜀i,EP. An equivalent expansion holds for the eigenfunction at the EP.

1.4. Calculation of exceptional points in thermoacoustics

We consider a thermoacoustic system with an n−𝜏 flame model and calculate EPs as n and 𝜏 are varied. The eigenvalues are

the roots of the dispersion relation

D(𝜔;n, 𝜏) = 0, (4)

where D(𝜔;n, 𝜏) ≡ det [𝐋(𝜔;n, 𝜏)] is the characteristic function, which is transcendental and analytic in 𝜔 in some subdomain

of the complex plane. For an eigenvalue to have a = 2, (4) must be satisfied with the two following conditions

𝜕D

𝜕𝜔
(𝜔;n, 𝜏) = 0, (5)

𝜕2D

𝜕𝜔2
(𝜔;n, 𝜏) ≠ 0. (6)

The solution of the two complex-valued equations (4) and (5) is the set of parameters (nEP, 𝜏EP) and the defective eigenvalue

𝜔EP. Equations (4) and (5) would also be satisfied for degenerate semi-simple eigenvalues, such as those found in systems with

rotational symmetry. However, in systems without symmetry, which we consider here, degenerate eigenvalues are generically

defective [10]. The defective eigenvalue has algebraic multiplicity two, but there is only one associated eigenvector p̂EP.

1 e.g., a fluctuation evolves as (̂·)exp (i𝜔t).
2 This is in contrast to the semi-simple case, in which the first-order sensitivity is finite (Theorem II-2.3 in Ref. [1]).



Download English Version:

https://daneshyari.com/en/article/6752627

Download Persian Version:

https://daneshyari.com/article/6752627

Daneshyari.com

https://daneshyari.com/en/article/6752627
https://daneshyari.com/article/6752627
https://daneshyari.com

	tooltip zref@1: 
	tooltip zref@2: 


