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a b s t r a c t

The recently developed Wiener Path Integral (WPI) technique for determining the joint

response probability density function of nonlinear systems subject to Gaussian white noise

excitation is generalized herein to account for non-white, non-Gaussian, and non-stationary

excitation processes. Specifically, modeling the excitation process as the output of a filter

equation with Gaussian white noise as its input, it is possible to define an augmented response

vector process to be considered in the WPI solution technique. A significant advantage relates

to the fact that the technique is still applicable even for arbitrary excitation power spectrum

forms. In such cases, it is shown that the use of a filter approximation facilitates the implemen-

tation of the WPI technique in a straightforward manner, without compromising its accuracy

necessarily. Further, in addition to dynamical systems subject to stochastic excitation, the

technique can also account for a special class of engineering mechanics problems where the

media properties are modeled as stochastic fields. Several numerical examples pertaining to

both single- and multi-degree-of-freedom systems are considered, including a marine struc-

tural system exposed to flow-induced non-white excitation, as well as a bending beam with a

non-Gaussian and non-homogeneous Young’s modulus. Comparisons with Monte Carlo sim-

ulation data demonstrate the accuracy of the technique.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty propagation in engineering mechanics and dynamics is a highly challenging problem that requires development

of analytical/numerical techniques for determining the stochastic response of complex engineering systems. In this regard,

although Monte Carlo simulation (MCS) has been the most versatile technique for addressing the above problem (e.g., [1,2]),

it can become computationally daunting when faced with high-dimensional systems or with computing very low probability

events. Thus, there is a demand for pursuing more computationally efficient methodologies. In the field of stochastic engineering

dynamics, a number of alternative techniques, such as stochastic averaging (e.g., [3–5]), statistical linearization (e.g., [6–8]), as

well as methodologies based on Markov approximations and related Fokker-Planck equations [9], have been developed over the
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past few decades with varying degrees of accuracy.

More recently, a Wiener Path Integral (WPI) technique, whose origins can be found in theoretical physics [10], has been

developed in the field of engineering dynamics for determining the response transition probability density function (PDF) of

oscillators subject to Gaussian white noise excitation [11]. The technique has been generalized to account for multi-degree-of-

freedom (MDOF) systems and diverse nonlinear/hysteretic system modeling [12], as well as for systems endowed with fractional

derivative terms [13]. Further, the technique has been enhanced from a computational efficiency perspective by relying on its

localization capabilities and invoking appropriate expansions for the response PDF [14]. In this regard, sparse PDF representa-

tions in conjunction with compressive sampling tools and group sparsity concepts have been utilized in Ref. [15] for addressing

relatively high-dimensional stochastic systems. Finally, it has been shown by Kougioumtzoglou [16] that the technique can also

address a special class of engineering mechanics problems where media properties are modeled as stochastic fields, while pre-

liminary efforts on quantifying the error of the technique can be found in Ref. [17]. Nevertheless, the WPI technique has been

limited so far to treating Gaussian white noise excitation processes only.

In this paper, the WPI technique is extended to account for non-white, non-Gaussian and non-stationary processes repre-

senting either the excitation of an MDOF dynamical system, or the media properties of a class of one-dimensional continuous

systems. To this aim, modeling the excitation process as the output of a filter equation with Gaussian white noise as its input

(e.g., [18]), it is possible to define an augmented response vector process to be considered in the WPI solution technique. A sig-

nificant advantage relates to the fact that the technique is still applicable even for arbitrary excitation power spectrum forms. In

such cases, it is shown that the use of a filter approximation (see also [19]) facilitates the implementation of the WPI technique

in a straightforward manner. Several numerical examples pertaining to both single- and multi-degree-of-freedom systems are

considered, including a marine structural system exposed to flow-induced non-white excitation, as well as a bending beam

with a non-Gaussian and non-homogeneous Young’s modulus. Comparisons with MCS data demonstrate the accuracy of the

technique.

2. Preliminaries

2.1. Fokker-Planck equation

This section serves as a brief background on Markov processes, the associated Chapman-Kolmogorov (C-K) and Fokker-Planck

(F-P) equations, as well as their relation to a corresponding stochastic differential equation (SDE).

Consider a Markov stochastic vector process, 𝜶(t), where 𝜶 = [𝛼j]n×1, for which the C-K equation is satisfied (e.g., [20]) for

any tl+1 ≥ tl ≥ tl−1, i.e.,

p(𝜶l+1, tl+1 ∣ 𝜶l−1, tl−1) = ∫
∞

−∞
p(𝜶l+1, tl+1 ∣ 𝜶l, tl)p(𝜶l, tl ∣ 𝜶l−1, tl−1)d𝜶l (1)

where p(𝜶l+1, tl+1 ∣ 𝜶l−1, tl−1) denotes the transition PDF of the process 𝜶. For a Markov process, the sample paths are continu-

ous functions of t with probability one, if the Lindeberg condition is satisfied (e.g., [21]), namely for any 𝜖 > 0

lim
Δt→0

1

Δt ∫|𝜶l+1−𝜶l|>𝜖
p(𝜶l+1, tl+1 ∣ 𝜶l, tl)d𝜶l+1 = 0 (2)

where Δt = tl+1 − tl. Such a process is called a diffusion process and the components of its drift vector,𝐀(𝜶l, tl) = [Aj(𝜶l, tl)]n×1

and of its diffusion matrix 𝐁(𝜶l, tl) = [Bjk(𝜶l, tl)]n×n can be defined as (e.g., [22])

Aj(𝜶l, tl) = lim
Δt→0

𝔼
[
𝛼jl+1 − 𝛼jl

]
Δt

(3)

and

B2
jk
(𝜶l, tl) = lim

Δt→0

𝔼
[
(𝛼jl+1 − 𝛼jl)(𝛼kl+1 − 𝛼kl)

]
Δt

(4)

respectively. Further, employing the C-K Eq. (1) leads to the well-known F-P equation (e.g., [23,24])

𝜕p

𝜕t
= −

∑
j

𝜕

𝜕𝛼j

(
Aj(𝜶, t)p

)
+ 1

2

∑
j,k

𝜕

𝜕𝛼j

𝜕

𝜕𝛼k

(
B̃jk(𝜶, t)p

)
(5)

where p = p(𝜶l+1, tl+1 ∣ 𝜶l, tl) and �̃�(𝜶, t) = 𝐁(𝜶, t)𝐁T(𝜶, t).
The F-P Eq. (5) is related to a first-order SDE of the form

�̇� = 𝐀(𝜶, t) + 𝐁(𝜶, t)𝜼(t) (6)

where the dot above a variable denotes differentiation with respect to time t and𝜼(t) is a zero-mean and delta-correlated process

of intensity one; i.e., 𝔼
[
𝜂j(t)

]
= 0 and 𝔼

[
𝜂j(tl)𝜂k(tl+1)

]
= 𝛿jk𝛿(tl − tl+1), for any j, k ∈ {1,…, n}, where 𝛿jk is the Kronecker delta,

and 𝛿(t) is the Dirac delta function.
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