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a b s t r a c t

This paper is concerned with reduced-order modelling of wave propagation in an elastic
layer of constant curvature and thickness by means of the generalised Galerkin method
with Legendre polynomials used as coordinate functions. A new family of polynomial
approximations to the dispersion relation and corresponding approximations to the field
variables are obtained. These approximations have high accuracy, particularly in resolving
the surface waves which are dominant features of the solution. The convergence rate is
assessed by alternative accuracy measures and shown to be exponentially fast while the
order of polynomials increases at a slow and regular rate. Detailed analysis of displace-
ments and stresses in (frequency, wavenumber) space is performed. This novel modelling
should facilitate studies of mode conversion around bends, where short waves are
involved, for example in soft materials.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of wave propagation in an elastic layer of constant curvature and thickness is an ideal benchmark problem to
assess accuracy and efficiency of various approximate theories and methods. The exact solutions in the plane strain case are
readily available for a straight layer [1,2] and for a ‘thick-walled hollow cylinder’ [3]. The theories, or models, of Bernoulli-
Euler, Mindlin-Herrmann and Timoshenko are generally recognized as ‘low frequency e long wave’ approximations of the
exact Rayleigh-Lamb solution. The thin shell approximation referred to in the literature as a curved beam theory [2,4,5] is also
known as a ‘low frequency e long wave’ approximation of the exact solution of the problem for a layer of constant curvature.

Recently, a hierarchy of reduced-order models of elastic wave propagation in a straight layer have been formulated in Refs.
[6,7] to capture asmany branches of dispersion diagram as necessary. The two distinctive features of thesemodels are that the
dispersion equations are formulated as low-order polynomials in both frequency and wavenumber and that the cut-on
frequencies match their exact counterparts. The idea of the present paper is to formulate similar hierarchy for a layer of
constant curvature and to assess ranges of validity of its members. However, the methodology employed here differs pro-
foundly from those used in Refs. [6,7]. The point of departure is the energy functional, and the variational method, often
referred to as the generalised Galerkin's method [8,9] is used with the Legendre polynomials as the coordinate functions. By
these means, the governing differential equations, which provide a polynomial dispersion equation at any approximation
level, are derived. Although this methodology is described both in the context of alternative projection methods [10] and in
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the context of the finite element method [11, Chapter 3], it has not yet been, to the best of our knowledge, used for analysis of
elastic wave propagation.

The derivation of governing equations is presented in Section 2. The alternative convergence and accuracy measures are
introduced and discussed in Section 3. Section 4 is concerned with analysis of dispersion diagrams, obtained at different
approximation levels. The detailed field analysis and convergence studies are presented in Section 5. Results of studies are
summarized in Conclusions.

2. Governing equations of generalised Galerkin method

The equations of the generalised Galerkin's method for a curved layer of constant curvature and thickness may be obtained
straightforwardly from the governing differential equations of motion and the traction-free boundary conditions. However,
we derive here these equations from Hamilton principle in order to highlight the variational nature of this method in elasto-
dynamics.

We consider the plane strain state of a layer. Its thickness h is chosen as a length scale, and stresses are scaled by rc22. Here r
is the material density, and (c1, c2) are the (P, S) wave speeds. The scaled radius of curvature of the centreline of a layer is
designated as r0. The scaled displacement in the circumferential direction (along the q- axis) is ~uðr; q; tÞ, the scaled
displacement in the radial direction (along the r- axis) is ~vðr; q; tÞ. The analysis is restricted to free wave propagation in the
absence of external forces.

The kinetic energy is:
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The potential energy is (here a ¼ c1
c2):

V ¼ 1
2
rh2c22

Zr0þ1 =

2

r0�1 =

2

Zq2
q1

"�
a2

v~uðr; q; tÞ
vr

þ
�
a2 � 2

�1
r

�
v~vðr; q; tÞ

vq
þ ~uðr; q; tÞ

��
v~uðr; q; tÞ

vr
þ
�
a2

1
r

�
v~vðr; q; tÞ

vq
þ ~uðr; q; tÞ

�

þ
�
a2 � 2

� v~uðr; q; tÞ
vr

�
1
r

�
v~vðr; q; tÞ

vq
þ ~uðr; q; tÞ

�
þ 2

�
r
v

vr

�
~vðr; q; tÞ

r

�
þ 1

r
v~uðr; q; tÞ

vq

�2
#
rdrdq

(2)

These formulas are substituted in the action integral H ¼
Z t2

t1
½T � V �dt, variation dH ¼ 0 is taken and standard by-parts

integration is performed. Then time dependence is taken as expð� iutÞ, i.e. ~uðr; q; tÞ ¼ uðr; qÞexpð� iutÞ, ~vðr; q; tÞ ¼ vðr;
qÞexpð� iutÞ, this multiplier is omitted and the frequency parameter is introduced as U ¼ uh

c1
. The system of two variational

equations is obtained by equating to zero expressions containing the independent variations duðr; qÞ and dvðr;qÞ:

Zr0þ1 =

2

r0�1 =

2

Zq2
q1

�
U2uðr; qÞ þ vsrrðr; qÞ

vr
þ 1

r
vsrqðr; qÞ

vq
þ 1

r
ðsrrðr; qÞ � sqqðr; qÞÞ

�
duðr; qÞrdrdq�

Zq2
q1

srrðr; qÞduðr; qÞrj
r¼r0�1 =

2
r¼r0þ

1 =

2dq¼0

(3a)

Zr0þ1 =

2

r0�1 =

2

Zq2
q1

�
U2vðr; qÞ þ vsrqðr; qÞ

vr
þ 1

r
vsqqðr; qÞ

vq
þ 2srqðr; qÞ

r

�
dvðr; qÞrdrdq�

Zq2
q1

srqðr; qÞdvðr; qÞrj
r¼r0�1 =

2
r¼r0þ

1 =

2dq¼0 (3b)

Non-dimensional stresses in Eq (3) are:
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