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a b s t r a c t

A new method for input signal reconstruction is presented. This approach utilizes the con-

volution relationship of inputs and outputs of linear systems. A linear discretization of sam-

pled points was assumed in formulating the discrete convolution integral. Subsequently, the

resulting equation was modified via a linear constraint to facilitate solution by the least square

method. This improves the conditioning of discrete deconvolution. The method was validated

numerically on a single degree of freedom dynamic system. Inputs reconstructed matched

the applied input very well for a low noise case. A methodology for multiple inputs and out-

puts was developed. The single input-multiple output formulation was validated using exper-

imental strain measurements of hammer pulse tests. Pulse areas and peak magnitudes were

reconstructed with good accuracy.

© 2018 Published by Elsevier Ltd.

1. Introduction

Inverse signal reconstruction is necessary in a number of physical problems. One often desires knowledge of a system that

cannot be directly measured or accurately modeled. Many such linear cases can be represented by the convolution integral

which relates the measured output as a function of the desired input and the impulse response of the system. Deconvolution

may be applied to reconstruct the desired input. Due to the nature of this formulation, these problems are characterized as

inverse problems [1]. Acoustic reverberation reduction [2], surface heat flux measurement [3], and dynamic load measurement,

are a few examples of such problems.

The motivation for the present work is dynamic load measurement, primarily for use in hypersonic wind tunnel experiments.

There are a host of wind tunnel test scenarios that would benefit from dynamic load measurement capability. Examples include

shroud separation [4,5], store separation [6–8], and jet-flow interaction [9–11]. There exist methods that attempt to account for

inertial contributions by adding acceleration measurement [12–15]. Other methods use deconvolution of the impulse response

function to determine the applied loads [16–18]. Such methods typically utilize regularization to solve the ill-posed inverse

problem [19].

Sanchez et al. [20] presents a comprehensive review of many of the force reconstruction techniques employed to date.

The authors categorize the solution methodologies as Direct, Regularization, and Probabilistic/Statistical methods. The Direct

methods tend to fit the data to explicit models, e.g. structural models [21] and interpolation functions [22–24]. These approaches

have achieved success without the use of regularization but require complex, application specific models or extensive curve

fitting. The methods that utilize common regularization schemes, e.g. Tikhonov or TSVD, typically have the added challenge
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of selecting an optimal regularization parameter and may impart unwanted smoothness to the solution. Schuster et al. [25]

presents an even more recent review of some of techniques being applied to the broader field of inverse problem solution, much

of which focuses on the selection of a regularization parameter [26,27]. Probabilistic/Statistical methods appear to be similarly

spirited to Direct methods and often employ a system model for which parameters are to be fit, e.g. structural frequencies and

damping of a beam, with the addition of a noise term. This modeling is not desirable and often, regularization or filtering is

required to ensure the well-posedness of the system.

In this paper we present a novel method for the solution of ill-posed inverse problems without the use of regularization,

filtering, system parameter estimation, or curve fitting. We seek a solution methodology that does not impart arbitrary smooth-

ness to counter the ill-posedness. The discussion in the following sections presents the technical approach for the method and

provides numerical and experimental examples for validation. Numerical studies are performed on a single input single output

(SISO) single degree of freedom (SDOF) spring-mass-damper system. This method is extended to single input multiple out-

put (SIMO) and multiple input multiple output (MIMO) systems. SIMO system validation is performed using data obtained by

experiments from a typically sized test article in the Arnold Engineering Development Complex’s (AEDC) Balance Calibration

Laboratory. This facility is located in White Oak, Maryland and is most well known for its hypervelocity wind tunnel, Tunnel No.

9.

2. SISO formulation and validation

First, we will consider a SISO linear time invariant (LTI) system.

2.1. SISO formulation

For LTI systems, the relationship between an input, u(t), and output, y(t), can be described by the convolution of the input

and impulse response function (IRF), h(t), of the system. This relationship can be expressed as

y(t) = ∫
t

0

h(t − 𝜏)u(𝜏)d𝜏. (1)

Typical solution of the inverse problem using Eq. (1) invokes the assumption that system response to a finite pulse is approx-

imately the impulse response [16]. If the response is scaled by the area and time shifted by the width of the impulse, this is

a decent assumption. Any output response can be deconvolved with this impulse response to reconstruct the input. However,

there are two main drawbacks of this: hammer pulses are the only applicable input calibration forces and the deconvolution is

ill-posed. In the present paper we will introduce a methodology to remedy these shortcomings and use more of the information

collected during a typical calibration. First, one may invoke the commutative property of the convolution integral and rewrite

Eq. (1) as

y(t) = ∫
t

0

u(t − 𝜏)h(𝜏)d𝜏. (2)

For discrete measurement signals the integral in Eq. (2) can be segmented into a summation of integrals over each pair of

sampling points:

y(tk) =
k−1∑
i=1

∫
ti+1

ti

u(tk − 𝜏)h(𝜏)d𝜏. (3)

Many discrete representations of the convolution integral utilize the assumption that a sampled point holds constant until the

next point is sampled. However, here we will assume that u(t) and h(t) are piecewise linear over the sampling time segment,

Δts, as follows:

u(t) = (1 − s)ui + sui+1 t ∈ [ti, ti+1] (4a)

h(t) = (1 − s)hi + shi+1 t ∈ [ti, ti+1] (4b)

s = t − ti

Δts

t ∈ [ti, ti+1] (4c)

From Eq. (4c), we can see that dt = Δtsds. Note that for convenience of formulation, we have assumed the sampling frequencies

to be the same for u(t) and h(t). However, we will subsequently use a larger time segment for h(t) through a linear constraint.

Applying this constraint will significantly improve the conditioning of the problem, for solution via the least squares method.

For compactness, the expressions in Eq. (4) may be written in matrix form as follows:

u(t) =
[
ui ui+1

]{N1

N2

}
t ∈ [ti, ti+1] (5a)



Download English Version:

https://daneshyari.com/en/article/6752709

Download Persian Version:

https://daneshyari.com/article/6752709

Daneshyari.com

https://daneshyari.com/en/article/6752709
https://daneshyari.com/article/6752709
https://daneshyari.com

	tooltip zref@0: 
	tooltip zref@1: 


