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a b s t r a c t

Structural health monitoring (SHM) has received increasing attention due to its low cost and

high performance in the field of non-destructive testing. However, the data acquisition step of

SHM, especially in acoustic emission (AE) applications, often encounters a sampling rate bar-

rier because of limited energy and storage resources. In this paper, we propose and evaluate a

compressed sensing AE signal acquisition system to solve this problem. Our sampling frame-

work is based on the existing random demodulation (RD) architecture, which is easy to imple-

ment in AE monitoring systems. Our sparse recovery algorithm is based on 𝓁1-homotopy with

a learned dictionary, which compared to alternative techniques/dictionaries is more accurate,

fast, and easily-implemented for dynamic, non-stationary, streaming AE signals. Finally, we

apply the proposed method to actual signals to verify its validity and efficiency. The results

confirm that the proposed sampling model, dictionary, and algorithm can realize the goal of

under-sampling and reconstructing AE signals with high accuracy and speed.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

To ensure the safety of structures such as in aerospace, civil, and mechanical engineering infrastructure, traditional mainte-

nance is usually done in a time-based model wherein decisions (e.g., preventive repair times/intervals) are determined based

on failure time analyses with non-destructive testing (NDT) techniques. As an example, aircraft are periodically inspected on

the ground and missiles are retired after a set amount of captive-carry hours [1]. However, time-based maintenance requires

downtime for inspection which may be very costly. In addition, periodic inspection is not sensitive to emergencies and may not

yield enough structural information in time [1,2]. These drawbacks are amplified with the increasing size and complexity of

structures, especially in the fields of aerospace and civil engineering.

To address these types of challenges, structural health monitoring (SHM) has been proposed as an alternative to the conven-

tional monitoring paradigm. SHM involves integrating sensors into the structure as a whole to collect first-hand information

that can be used to assess a structure’s integrity and durability in real time, and it can also provide early warnings regarding

the safety of the structure [3–5]. SHM systems have two main characteristics: they are online, which means that the health of

a structure can be assessed immediately during the complete life cycle process, and they are integral, which means that the
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loads, damage monitoring, sensing and assessment algorithms are all embedded in the structure as a whole [6,7]. These two

characteristics of SHM allow traditional time-based maintenance to be replaced with a more cost-effective condition-based

maintenance wherein recommendations are made based on the information collected through a continual monitoring process

[1,2]. One should take these two features into consideration when building new SHM systems.

Acoustic emission (AE) is an important technique studied in SHM. AE signals correspond to certain stress waves in solids

caused by changes such as crack formation or plastic deformation in the internal structure, which may be introduced by aging,

temperature gradients, or external mechanical forces [8,9]. Consequently, the information contained in an AE signal is closely

related to the damage; for example, AE can help in finding the position of developing cracks. AE signal features such as amplitude,

duration, rise time, decay time, energy, and frequency content can be used to identify and evaluate damage in a structure [10].

However, because AE signals are susceptible to environmental noise and because the AE theory is not yet mature, the practical

application of AE techniques is currently limited to isolated cases such as concrete bridges [11–13]. Still, as a passive NDT

method, AE has some advantages such as the fact that AE sources come from the material itself, meaning that no additional

excitation device is needed for inspection, and it can provide real-time continuous monitoring of the structure [14]. These

advantages make AE technology a very promising method in SHM, and AE is widely studied and used in the lab to test the

materials like concrete structures [10] and fibre composites [15]. One may expect that with the improvement of AE theory and

the progress of signal acquisition and processing technology, AE will become more widely used in SHM outside of laboratory

settings.

The signal acquisition component is an important consideration in an AE system. One can obtain accurate material health

assessments by monitoring AE signals, and more detailed damage information can be extracted if one can precisely collect and

analyze AE signals. The frequency range of AE signals is typically from 10 Hz to 500 kHz, and different frequency bands contain

different information [14,16–18]. Unfortunately, it is difficult to support such a high bandwidth in real-time SHM sampling

systems, where energy and storage may be limited. The Fiber Bragg Grating (FBG) sensor, which has many advantages such

as anti-electromagnetic interference, small size, and ease of integration, is considered an alternative for the next generation of

SHM systems [19]. Unfortunately, the sampling rate of SHM systems based on FBG sensors is relatively low and cannot support

the bandwidths of AE signals [20]. Therefore, it is worthwhile to study the problem of sampling AE signals at a low rate while

retaining as much information as possible.

Several researchers have explored the use of compressed sensing (CS) in SHM systems to efficiently capture high-bandwidth

signals. CS makes use of sparse signal structure to break the conventional Nyquist sampling limit [21–23]. By capturing a signal

directly in compressed form, CS allows for a potentially significant reduction in a signal’s sampling rate. From the compressed

samples, one can later use the sparse model to recover the signal fully. By introducing CS into an SHM system, one can not only

greatly reduce the required energy and storage, but also increase the reliability and extend the lifetime of the SHM system.

Current investigations of CS for SHM can be divided into two categories. One category involves applying CS compression after

data has first been acquired in a conventional fashion. In this vein, Cortial et al. [24] applied CS as a means of data compression

in SHM sensor networks, Haile and Ghoshal [25] used CS for full-field strain image reconstruction, Huang et al. [26] utilized CS

to recover spike signals in SHM and tested on data from bridge monitoring, and Yang and Nagarajaiah [27] incorporated sparsity

into a framework for damage classification. In various contexts, these works allowed for reduced transmission, calculation, and

storage requirements while improving the information extracted from the signals in SHM systems. However, all of these works

of data compression and reconstruction involved offine application of CS, where compression/subsampling was performed in

software after an initial high-rate acquisition of Nyquist-rate samples. Indeed, much of the original CS literature focused on

discrete and finite-dimensional signals and could not be directly applied to analog signals.

The second category involves integrating CS directly into the analog SHM front end, after which signal features (or the com-

plete signal itself) may be extracted/reconstructed from the low-rate compressed measurements. While some of the CS literature

has since expanded to consider compressive sampling and reconstruction architectures for analog signals, relatively little work

in SHM has considered these architectures explicitly. Li et al. [28] focused on extraction of mode shapes and frequencies from

vibrational data. This work considered various randomized sampling and compression protocols, some of which can be applied

directly to an incoming analog signal. However, specific hardware implementations and performance on actual data were not

provided. Along similar lines, Yang and Nagarajaiah [29] proposed a sparsity-based technique for output-only modal identifi-

cation. That work potentially allows for fewer sensors to be used in multi-sensor settings, but did not consider the problem of

compression at each individual sensor. A subsequent paper [30], which included experimental results, extended the authors’

work in output-only modal identification and incorporated non-uniform, sub-Nyquist sampling as a front-end CS acquisition

protocol. Finally, Yang et al. [31] considered the problem of output-only modal identification from video cameras with a sub-

Nyquist temporal sampling rate.

This paper proposes a CS-based SHM sub-sampling architecture for analog AE signals and simulates its performance on actual

AE data. The signal acquisition protocol is based on random demodulation (RD) [32–34], which is one of the CS techniques

that can permit low-rate sampling in an analog front-end. To dynamically reconstruct the high-rate sample stream from the

low-rate compressive samples, we adopt the 𝓁1-homotopy method [35] in an online fashion. To boost the performance of this

algorithm, we incorporate a sparse dictionary learned from AE training data. It should be noted that this paper only proposes a

hardware-level sub-sampling system architecture, and does not provide a specific hardware implementation. However, through

simulations on real (previously recorded) signals, the proposed architecture is proved to be efficient and feasible, and could be

naturally extended to an actual hardware system.
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