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a b s t r a c t

Two methods are suggested for using measured vibrations to estimate linear boundary stiff-

ness and damping for beams, while simultaneously estimating axial tension. Estimation is

performed by fitting model boundary parameters to measured modal vibration data. The

methods are validated using simulated and experimental data, and shown to be accurate

when boundary parameters are not extreme, i.e. representing either zero stiffness or com-

pliance.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

We suggest two methods for estimating parameters describing boundary conditions for elastic beams using measured vibra-

tions. Theories used in this paper are derived from beam theory and modal analysis [1,2]. The motivation is the need to estimate

tension of beams from vibration data, while taking into account beam boundaries not being ideal, i.e. bolted, riveted, welded,

not fully clamped etc. A specific example of the possible use of a simultaneous tension and boundary condition estimation is the

problem of estimating bolt tension or tightness from vibration data [3], as bolt tension change the contact stiffness at endpoints.

Methods exist for using vibration data to estimate tension of beams [4–7], but few include estimation of boundary conditions.

Methods for estimating axial tension when boundary conditions are unknown exists, for example a method which uses five

mode shape measurements of a single mode to estimate four mode shape coefficients and tension [8], but without estimating

boundary parameters.

Boundaries have both stiffness and damping. For damping estimation with real-world beams, difficult aspects of friction such

as hysteresis may be a problem, even when estimating linearized boundary damping. Hysteresis can be modeled with a linear

restoring force using a Hilbert transform [9] (loss factor hysteresis), but accuracy and physical interpretations is lost.

General system identification theory for dynamical systems can be used for estimation of unknown parameters [10–12].

Many identification procedures exists, including the restoring force surface method [13,14], which can be used with time signals

to estimate both nonlinear and linear term parameters; the field of control theory has its own estimation procedures based on
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Fig. 1. Beam in tension with springs and dampers at boundaries.

minimal noise principles [15], designed to be real time during measurements.

Linear and nonlinear parameter estimation theory [16] is relevant for estimating boundary parameters. Estimation of beam

parameters using least squares minimization with experimental data has been demonstrated for specific cases [17,18], but not

for arbitrary boundaries.

A method for simultaneous estimation of axial tension and boundary parameters of beams is needed. In this work we suggest

two methods: Method 1 fits measured natural frequencies, damping coefficients and mode shapes to Rayleigh’s quotient using

linear regression, while Method 2 fits measured natural frequencies and/or mode shapes to the solution of an eigenvalue prob-

lem using nonlinear regression. Method 2 estimate boundary stiffness parameters and tension, while Method 1 also estimates

boundary damping parameters, but requires mode shapes.

Section 2 presents the beam boundary model used for analysis. Section 3 presents Method 1 and Section 4 presents Method

2. Section 5 validates the two methods using simulated and experimental data. Section 6 concludes on the validity of proposed

estimation methods.

2. Mathematical model

Fig. 1 shows a beam in tension, with linear and rotational springs [19] and dampers at its boundaries. The beam has length l,

and axially uniform mass density 𝜌, Young’s modulus E, area moment of inertia I and cross-section area A. The beam performs

transverse vibrations U(X,t) in the plane of the paper, where X ∈ [0; l] is the axial coordinate, and t the time; it’s curvature

can be approximated as the second derivative U″(X,t), and the axial tension N is axially uniform and constant. Transverse

and longitudinal boundary conditions consists of transverse and rotational springs K1−4, dampers C1−4, and prescribed axial

tension N.

2.1. Equation of motion

Nondimensional quantities are introduced:

x = X

l
, u(x, 𝜏) = U(X, t)

l
, 𝜏 = 𝜔0t, 𝜔0 =

√
EI

𝜌Al4
,

p = Nl2

EI
, k1 = K1l3

EI
, k2 = K2l3

EI
, k3 = K3l

EI
, k4 = K4l

EI
,

c1 = C1l3𝜔0

EI
, c2 = C2l3𝜔0

EI
, c3 = C3l𝜔0

EI
, c4 = C4l𝜔0

EI
. (1)

Nondimensional position and time are x = X/l and 𝜏 = 𝜔0t, where 𝜔0 is a characteristic angular frequency. The nondimensional

deflection is u(x,𝜏) and its derivatives will be denoted u′ w.r.t. x and u̇ w.r.t. 𝜏 . The nondimensional tension p describes a ratio

between transverse beam stiffness originating from tension and from bending, and includes information about beam slender-

ness, since l2∕I = s2
r ∕A, where sr = l∕

√
I∕A is the slenderness ratio. Boundary springs and dampers are nondimensionalized into

k1−4 and c1−4.

Bernoulli-Euler’s equation of motion for deflections u(x,𝜏) [1] is, in nondimensional form

ü + u″″ − pu″ + Du̇ = 0, (2)
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