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a b s t r a c t

Eigenvalues and eigenvectors play a fundamental role in determining the dynamic
behavior of a vibrating system. Thus, an important goal in vibration control is to modify the
eigenstructure to match the design specifications. Feedback control is a popular approach
to this problem, which is however not always satisfactory. In fact, while system control-
lability suffices to assure that any requirement on the eigenvalues can be met by the
controlled system, desired closed-loop eigenvectors cannot be attained in general, due to
inherent limitations of active control.
To overcome such a problem, this paper proposes a hybrid approach in which the me-
chanical system and the controller are concurrently designed to improve the attainability
of the desired eigenstructure. Indeed, the suitable modification of the system inertial and
elastic parameters modifies the set of eigenvectors that can be achieved through active
control.
In this work is demonstrated that such an objective can be effectively accomplished by
minimizing the rank of a certain matrix which depends on the features of the original
system and on the desired eigenpairs. Two algorithms for rank minimization are described
and adjusted for the problem under consideration.
The method is validated with three examples. In the first one, eigenstructure assignment of
a 5 degrees of freedom system that previously appeared in the literature is performed,
demonstrating the effectiveness of the proposed approach with respect to the state of the
art. In the second example the same 5 degrees of freedom system is considered by also
including damping, to evaluate the method capability to deal with damped systems. The
third one is a 30 degrees of freedom system that enables the comparison of the two al-
gorithms for different choices of the actuation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic behavior of vibrating linear systems is expressed by the well-known system of second-order differential
equations
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M€qðtÞ þ C _qðtÞ þ KqðtÞ ¼ 0; (1)

whereM;C;K2ℝN�N are respectively the symmetric mass, damping and stiffness matrices, q2ℝN is the displacement vector,
and N is the number of degrees of freedom. It is also supposed thatM is positive definite and C;K are positive semi-definite. It
is known, from the theory of linear differential equations, that the solution of such an equation is characterized by the ei-
genvalues li2ℂ and the eigenvectors ui2ℂN of the system, for i ¼ 1;…;2N, namely the solutions of the eigenproblemh

l2i Mþ liCþ K
i
ui ¼ 0: (2)

Eigenvalues and eigenvectors, together, constitute the eigenstructure of the system. The design of vibrating systems aimed
at satisfying specifications on eigenvalues and eigenvectors, which is commonly known as eigenstructure assignment, has
drawn increasing interest over the recent years. The most natural mathematical framework for such problems is constituted
by the inverse eigenproblems, which consist in the determination of the system model that features a desired set of ei-
genvalues and eigenvectors. Although such a problem is intrinsically challenging, several solutions have been proposed in the
literature. The approaches to eigenstructure assignment can be basically divided into passive control and active control.

Passive control, also known as dynamic structural modification (DSM), aims at achieving the desired eigenstructure by
modifying the physical properties of the system (typically the inertial and elastic parameters). In practice, the mass and
stiffness matrices are altered, usually by additive modification DM;DK2ℝN�N , in such a way that the modified system

ðMþ DMÞ €qðtÞ þ C _qðtÞ þ ðKþ DKÞqðtÞ ¼ 0 (3)

features the desired eigenstructure. Such an approach is often chosen because it does not require neither electronic devices
nor external power. Moreover, the resulting system is assured to be stable, as long as symmetry and positive definiteness are
preserved. However, in practice, not every desired specification can be actually obtained, because the modifications must be
feasible (for example, the mass of a component is bounded by technical or economic constraints). Therefore, passive control is
not always capable of assigning the desired eigenstructure with sufficient accuracy.

Active control consists in employing a feedback scheme in such a way that the closed-loop system features the desired
eigenstructure [1e4]. With that goal, suitable external forces are exerted on the system by controlled actuators. For example,
let fC2ℝN be the vector that represents such forces, then the equation of motion becomes

M€qðtÞ þ C _qðtÞ þ KqðtÞ ¼ fCðtÞ: (4)

Although such an approach requires the use of actuators and sensors, it is often more convenient with respect to DSM, for
example in the assignment of damped modes or simply whenever the structural modifications are impractical. Within the
field of control of structures, the methods that rely on the second-order linear model are of particular interest, because the
properties of the matrices M, C and K (e.g. symmetry or sparsity) can be exploited. One of the earliest examples of this
approach is given by Juang and Maghami [5], that propose a robust method for eigenvalue assignment via velocity and
displacement feedback or velocity and acceleration feedback. Such a method has been later modified by Chu and Datta in
Ref. [6]. A gradient flow approach for robust eigenvalue assignment has been developed by Chan et al. for state feedback [7]
and by Ho et al. for output feedback [8]. Partial pole assignment is achieved by Datta et al. for single-input control [9] and by
Ram and Elhay for multiple-input control [10]. Robustness in partial eigenvalue assignment is addressed by Qian and Xu in
Refs. [11,12]. There are also several recent contributions to the field of eigenvalue assignment, such as the optimization based
approaches by Brahma and Datta [13] and by Bai et al. [14].

Assignment of eigenvalues in combinationwith their respective eigenvectors has also been addressed in numerous papers.
For example, Schulz and Inman in Ref. [15] derive a parametrization of the feedback gain matrices and they exploit it to
optimize different design criteria. Triller and Kammer use a control coordinate system based on the Craig-Bampton sub-
structure representation [16]. Kim et al. developed a method based on the solution of the Sylvester equation [17]. Datta et al.
achieve partial eigenstructure assignment by appropriate choice of gain and input influence matrices [18]. Nichols and
Kautsky tackle the robust eigenstructure assignment problem for second-order systems by solving the generalized linear
problem subject to structured perturbations [16]. Duan and Liu proposed a parametric method which uses proportional-plus-
derivative feedback in Ref. [19]. Zhang et al. achieved partial eigenstructure assignment method through acceleration and
displacement feedback [20]. As an alternative to the second-order representation of the system, the receptance-based
formulation has also become popular in the eigenstructure assignment literature [21,22]. For example, systems with time
delay have been considered by Bai et al. in Ref. [23], where both receptance and system matrices are used.

In most of the reviewed papers, attention is paid to eigenvalues while eigenvectors are often neglected, since eigenvector
assignment is a more challenging issue. In fact, it can be proven that active control can assign only eigenvectors that belong to
certain vector spaces that depend on the physical properties of the system and on the characteristics of its actuation systems.
The dimension of such a space of allowable eigenvectors matches the number of independent actuation forces. Thus, if the
system is highly underactuated it is very unlikely that exact assignment of eigenvectors can be accomplished.
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