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a b s t r a c t

The nonlinear frequencies of pre-stressed graphene-based structures, such as flat gra-
phene sheets and carbon nanotubes, are calculated. These structures are modeled with a
nonlinear hyperelastic shell model. The model is calibrated with quantum mechanics data
and is valid for high strains. Analytical solutions of the natural frequencies of various plates
are obtained for the Canham bending model by assuming infinitesimal strains. These so-
lutions are used for the verification of the numerical results. The performance of the model
is illustrated by means of several examples. Modal analysis is performed for square plates
under pure dilatation or uniaxial stretch, circular plates under pure dilatation or under the
effects of an adhesive substrate, and carbon nanotubes under uniaxial compression or
stretch. The adhesive substrate is modeled with van der Waals interaction (based on the
Lennard-Jones potential) and a coarse grained contact model. It is shown that the
analytical natural frequencies underestimate the real ones, and this should be considered
in the design of devices based on graphene structures.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Thehighmechanical strength [1], thermalconductivity [2,3] andelectrical conductivity [4e6]of graphenehave receivedmuch
interest in recent years. The vibrational properties (i.e. frequencies and mode shapes) of graphene play an important role in
analysis anddesignofgraphene-basedsensors and resonators. Thereare several studieson thedevelopmentof newsensorsusing
graphene-based structures [7,8]. For example, graphene can be used in oscillators and electro-mechanical resonators [9e11].

The effect of pre-stressing on the vibrational properties of graphene have been investigated by Gupta and Batra [12] and
Mustapha [13], while foundation effects have been studied byMurmu and Pradhan [14], Lee and Chang [15], Lee et al. [16] and
Mustapha [13]. Sadeghi and Naghdabadi [17] use an atomistic method at the temperature of 19.3 K to calculated the nonlinear
frequencies of graphene sheets. The nonlinear vibration of sandwiches with graphene and piezoelectric layers have been
modeledbyLi et al. [18]. Favata andPodio-Guidugli [19] propose anorthotropic shellmodel for CNTs. Ansari et al. [20] use anon-
local shell theory to include the size-effects in the calculation of the frequencies of single and doublewalled carbon nanotubes.
Hussain et al. [21] obtain the natural frequencies of single walled carbon nanotubes by using Donnell thin shell theory. Li et al.
[22] used a nonlinear finite element (FE) method to analyze large deformations and obtain the nonlinear frequencies of gra-
phene membranes for nanomechanical applications. A linear material model works well for infinitesimal strains. But, the
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mechanical properties of graphenevary in large strains.Hence, nonlinearhyperelasticmaterialmodels shouldbeused tomodel
thematerial behavior in large strains [23,24]. Thermal vibrationof rectangular, circular and annual graphene sheets are studied
byKumaret al. [25],WangandHu [26],Mohammadi et al. [27] andBiswal andRao [28]. Thevibrational properties ofmulti-layer
circular and rectangular graphene sheets are obtained byKitipornchai et al. [29] andAllahyari and Fadaee [30]. Ke et al. [31] has
modeled the size-effects on vibrational properties of rectangular plates. The vibrational properties of a graphene sheet can be
calculated bymolecularmechanics [32] andmolecular dynamics [33]. Strozzi et al. [34] have calculated the natural frequencies
andmode shapes of CNTs byanalytical approaches and validated thembyexperimental, atomistic and FE results. Arghavan and
Singh [35] have computed the natural frequencies, mode shapes and force vibration of CNTs.

All mentioned continuummodels are limited by linear elastic material behavior. However, graphene shows nonlinear and
anisotropic behavior under large deformations [23]. Kumar and Parks [23] develop a hyperelastic material model for gra-
phene that is based on three strain invariants and several unknown material constants. Those constants need to be deter-
mined from appropriate tests. A suitable approach for this are ab-initio calculations. They are more accurate than molecular
dynamics simulations, and they do not have difficulties with applying homogeneous strain states as is the case in experi-
ments. In addition, atomistic potentials [36,37] underestimate elastic modulus [38]. A wide range for the elastic modulus for
graphene have been reported by Cao [39] that under or overestimate experimental and ab-initio results [40,41]. It should be
mentioned that Gupta and Batra [12] used the MM3 potential and obtained a very close results to experimental and ab-initio
results, but further investigations should be considered for large deformations. The nonlinear material model of Ghaffari et al.
[24] is used here to remedy these deficiencies and the consistency of the model with experimental and ab-initio results is
verified analytically. Neglecting the bending stiffness can result in large frequency errors for low pre-tension and/or small
sheets. However, the bending stiffness can be neglected for a large graphene sheet under significant pre-tension [24,42].

Isogeometric analysis (IGA) is a new computational technique that connects CAD and FE analysis [43]. Recently, an iso-
geometric FE formulation has been developed by Sauer et al. [44] for the analysis of liquid and solid membranes based on
inherent curvilinear coordinates. It has been extended to anisotropic membranes by Roohbakhshan et al. [45] and rotation-
free shells by Sauer and Duong [46] and Duong et al. [47]. This shell formulation has been applied to biomaterials and
composites by Roohbakhshan and Sauer [48,49] and to graphene by Ghaffari et al. [24]. The latter work uses the anisotropic
membrane model of Kumar and Parks [23] and extends it to a shell formulation by including the Canham model [50]. This
newmodel can simulate the anisotropic behavior of graphene-based structures under large deformation and it has been used
to simulate indentation and peeling of graphene sheets and torsion and bending of carbon nanotubes (CNT). Thermal fluc-
tuation are not considered in the current study. But the proposed model does allow for an extension to those. Thermal
fluctuations can result in structural softening, but they can be suppressed with small pre-strains above 1% [51,52]. Therefore
Kumar et al. [53] and Ghaffari et al. [24] obtain similar material properties as the experimental results of Lee et al. [41] by
using a hyperelastic constitutive law that disregards thermal fluctuations.

List of important symbols

1 identity tensor in R3

aa co-variant tangent vectors of S ; a ¼ 1;2
aab co-variant components of the metric tensor of S

aab contra-variant components of the metric tensor of S
aa contra-variant tangent vectors of S ; a ¼ 1;2
S 0 reference configuration of the manifold
S current configuration of the manifold
bab co-variant components curvature tensor of S

Eð0Þ logarithmic surface strain

Eð0Þ
dev deviatoric part of the logarithmic strain

Gg
ab

Christoffel symbols of the second kind

H mean curvature of S
J surface area change of S
k Gaussian curvature of S
k1, k2 principal curvatures of S
kp penalty parameter

l square root of the stretch ratio, i.e.
ffiffiffiffiffiffiffiffiffiffiffiffi
l1=l2

p
l1, l2 principal surface stretches of S
n surface normal of S
xa parametric coordinates; a ¼ 1;2
X reference position of the manifold
x current position of the manifold
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