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a b s t r a c t

One-dimensional phononic materials with material fields traveling simultaneously in space

and time have been shown to break elastodynamic reciprocity resulting in unique wave prop-

agation features. In the present work, a comprehensive mathematical analysis is presented to

characterize and fully predict the non-reciprocal wave dispersion in two-dimensional space.

The analytical dispersion relations, in the presence of the spatiotemporal material variations,

are validated numerically using finite 2D membranes with a prescribed number of cells.

Using omnidirectional excitations at the membrane’s center, wave propagations are shown

to exhibit directional asymmetry that increases drastically in the direction of the material

travel and vanishes in the direction perpendicular to it. The topological nature of the pre-

dicted dispersion in different propagation directions are evaluated using the computed Chern

numbers. Finally, the degree of the 2D non-reciprocity is quantified using a non-reciprocity

index (NRI) which confirms the theoretical dispersion predictions as well as the finite sim-

ulations. The presented framework can be extended to plate-type structures as well as 3D

spatiotemporally modulated phononic crystals.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Considerable effort has been devoted over the last few decades to study phononic materials (PMs) [1,2]. PMs are engineered

structures that are formed by a periodic variation of acoustic or elastic properties (stiffness and inertia) that extend along the

dimensions of 1D, 2D or 3D structures. Such periodic variations are typically realized via changes in material property, geometry,

or both [3–5]. Periodicity in PMs results in the creation of phononic bandgaps attributed to Bragg scattering effects which can be

both theoretically predicted and experimentally observed [6,7]. Phononic bandgaps primarily depend on the unit cell size and

are characterized by continuous frequency ranges within which incident wave propagation is significantly impeded in the PM

medium. As a result, such materials have been shown to provide promising solutions to challenges in vibration mitigation [8,9],

active vibration control [10], wave guidance [11,12], energy harvesting [13], and fluid flow control [14].

Owing to their periodicity, the wave propagation characteristics of large PMs can be reasonably predicted using the band

structure of the individual unit cell which portrays the cell’s dispersion relations. The dispersion relations relate the wave’s fre-

quency𝜔 to its spatial characteristics (e.g. wavenumber k or vector 𝐤 for multi-dimensional systems) [15]. Due to elastodynamic

reciprocity, band structures of perfectly periodic structures are symmetric about its origin (𝐤 = 0) implying that waves travel

from point A to B in the same manner they would travel from B to A under similar conditions [16]. Breaking such reciprocity

creates a bias in the band structure intended to force waves to travel asymmetrically in opposing directions [17–20]. Non-
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reciprocity in PMs have been very recently utilized to synthesize, among others, acoustic guides [21] and static displacement

amplifiers [22]. Means to induce a non-reciprocal behavior include introduction of large nonlinearities, geometrical asymme-

tries, topological features, and material fields that simultaneously travel in space and time [23,24]. The latter has been recently

shown in 1D phononic lattices [25], locally resonant acoustic metamaterials [26], and 1D flexural beams [27,28] to reveal intrigu-

ing unidirectional wave propagation capabilities.

The analysis of spatiotemporally modulated structures has, thus far, been limited to 1D structures and is yet to be mathe-

matically implemented in multi-dimensional phononic systems. As such, an adequate investigation of elastic non-reciprocity in

phononic 2D elastic structures remains lacking. In this effort, we introduce a comprehensive mathematical framework to cap-

ture and predict the non-reciprocal wave dispersion in thin 2D phononic membranes with spatiotemporally modulated (STM)

material fields. We begin with the governing motion equations for time- and space-varying material properties that happen

simultaneously and independently in both directions within the 2D space. The framework is derived for the general case for any

arbitrary periodic modulation waveform and is, in the subsequent sections, mathematically implemented in spatiotemporally

modulated membranes with harmonic and square wave modulations of material density and the membrane tension. The theo-

retically obtained dispersion surfaces are used to show the non-reciprocal behavior in the different propagation regions as well

as the corresponding distortion in the irreducible Brillouin zone (IBZ) as a result of the time-traveling material fields. The theo-

retical dispersion patterns are then verified numerically using actual dispersion contours reconstructed from the displacement

response of a finite membrane undergoing the material space and time modulations. Next, a directivity analysis is presented

to examine the non-reciprocal behavior of the membrane from the standpoint of the different propagation directions and how

the resultant attributes relate to the fundamental direction in which the membrane properties travel. Finally, a non-reciprocity

index (NRI) is defined and is used to efficiently summarize the non-reciprocal behavior as a function of the propagating direction

and the material modulation speed within the considered frequency ranges.

2. 2D non-reciprocal dispersion analysis

Membranes are ultra-thin 2D structures which sustain transverse loading using in-plane stresses and have no bending (flex-

ural) stiffness. Their vibration dynamics are captured by the 2D wave equation which can be written as

𝜕

𝜕x

[
P (x, y, t) 𝜕w (x, y, t)

𝜕x

]
+ 𝜕

𝜕y

[
P (x, y, t) 𝜕w (x, y, t)

𝜕y

]
= 𝜕

𝜕t

[
𝜌 (x, y, t) 𝜕w (x, y, t)

𝜕t

]
(1)

where P(x, y, t), 𝜌(x, y, t), and w(x, y, t), written henceforth as P, 𝜌, and w for brevity, represent general expressions of the mem-

brane tension, density per unit area, and transverse displacement, respectively, at any given location (x, y) and time instant t.

To break time-reversal symmetry and onset non-reciprocal dispersion, we assume the membrane properties P and 𝜌 to fol-

low a traveling-wave like pattern. As a result, these material properties travel simultaneously in space and time, and have no

permanent nodes or constant values within the structure. In here, these spatiotemporal modulations of P and 𝜌 are limited to

periodic functions that follow the constraints outlined by Cassedy et. al [29,30] to avoid an unstable response. In section 3, we

will discuss in details two types of modulations: harmonic (sinusoidal) and square wave modulations. In the general case, the

periodic spatial modulations have cyclic lengths of 𝜆mx = 2𝜋∕kmx and 𝜆my = 2𝜋∕kmy where kmx and kmy are the spatial modu-

lation frequencies in the x and y directions, respectively. The temporal modulations have a periodic time of Tm = 2𝜋∕𝜔m where

𝜔m represents the temporal modulation frequency. Owing to their periodic nature, P and 𝜌 can be expanded as two successive

Fourier series as follows

𝜌(x, y, t) =
∞∑

r=−∞

∞∑
s=−∞

𝜌r,seir(𝜔mt−kmxx)eis(𝜔mt−kmyy) (2)

and

P(x, y, t) =
∞∑

r=−∞

∞∑
s=−∞

Pr,seir(𝜔mt−kmxx)eis(𝜔mt−kmyy) (3)

where i =
√
−1 and the Fourier coefficients, 𝜌r,s and Pr,s, can be determined from the triple integrals

𝜌r,s =
1

Tm𝜆mx𝜆my ∫
Tm

0 ∫
𝜆my∕2

−𝜆my∕2 ∫
𝜆mx∕2

−𝜆mx∕2

𝜌(x, y, t)e−ir(𝜔mt−kmxx)e−is(𝜔mt−kmyy) dx dy dt (4)

and

Pr,s =
1

Tm𝜆mx𝜆my ∫
Tm

0 ∫
𝜆my∕2

−𝜆my∕2 ∫
𝜆mx∕2

−𝜆mx∕2

P(x, y, t)e−ir(𝜔mt−kmxx)e−is(𝜔mt−kmyy) dx dy dt (5)

Using the Floquet theory, traveling waves in a periodic structure comprise the periodicity of the structure which carries them

[31,32]. Consequently, a periodic wave solution to Eq. (1) can be written as

w(x, y, t) = ei(𝜔t−𝐤.𝐫) w(x, y, t) (6)
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