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a b s t r a c t

Soft materials can be designed with a functionally graded (FG) property for specific
applications. Such material inhomogeneity can also be found in many soft biological
tissues whose functionality is only partly understood to date. In this paper, we analyze the
axisymmetric guided wave propagation in a pressurized FG elastomeric hollow cylinder.
The cylinder is subjected to a combined action of axial pre-stretch and pressure difference
applied to the inner and outer cylindrical surfaces. We consider both torsional waves and
longitudinal waves propagating in the FG cylinder made of incompressible isotropic
elastomer, which is characterized by the Mooney-Rivlin strain energy function but with
the material parameters varying with the radial coordinate in an affine way. The pressure
difference generates an inhomogeneous deformation field in the FG cylinder, which
dramatically complicates the superimposed wave problem described by the small-on-large
theory. A particularly efficient approach is hence employed which combines the state-
space formalism for the incremental wave motion with the approximate laminate or
multi-layer technique. Dispersion relations for the two types of axisymmetric guided
waves are then derived analytically. The accuracy and convergence of the proposed
approach is validated numerically. The effects of the pressure difference, material gradient,
and axial pre-stretch on both the torsional and the longitudinal wave propagation
characteristics are discussed in detail through numerical examples. It is found that the
frequency of axisymmetric waves depends nonlinearly on the pressure difference and
the material gradient, and an increase in the material gradient enhances the capability of
the pressure difference to adjust the wave behavior in the FG cylinder. This work provides
a theoretical guidance for characterizing FG soft materials by in-situ ultrasonic nonde-
structive evaluation and for designing tunable waveguides via material tailoring along
with an adjustment of the pre-stretch and pressure difference.
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Nomenclature glossary

Br;B0;Bt Undeformed, initial (deformed) and current configurations
x ¼ cðXÞ; t Finite motion and time
X; x Position vectors in Br and Bt
N;n;nt Outward unit normal vectors in Br , B0 and Bt
s;T Cauchy and nominal stress tensors
ta; tA Applied mechanical traction vectors per unit area of vBt and vBr
WðFÞ Strain energy function per unit reference volume
Wi Derivative of W with respect to principal stretch li
u ¼ _x;ui Incremental displacement vector and its components
_q Incremental Lagrange multiplier
G;Gaibj Referential elasticity tensor and its components

_tA; _tA0 Lagrangian and Eulerian incremental traction vectors on vBr and vB0
A;B; L; a; b; l Inner and outer radii, and length of undeformed and deformed FG-EHC
l; lz Circumferential and axial stretches
h;h Ratios of outer radius to inner radius of undeformed and deformed FG-EHC
L; x Dimensionless radial coordinates of undeformed and deformed FG-EHC
srr; sqq; szz Initial principal stress components in B0
N Resultant axial force on each end of deformed FG-EHC
m10;m20 Material constants in affine variations
G Axisymmetric deformation parameter defined as G ¼ a2 � l�1

z A2

S Integration constant defined in Eq. (25)
Y1;M1;V1;M1 Incremental state vectors and 2� 2 system matrices for T waves
fiði ¼ 1� 8Þ Material parameters appearing in system matrix M
p0 Pressure-like quantity

K;U Dimensionless wave number and circular frequency depending on deformations
c; vp Phase velocity of incremental waves and its dimensionless counterpart
Skðk ¼ 1;2Þ Global transfer matrices for T and L waves
xj0; xj1; xjm Dimensionless radial coordinate at inner/outer/middle surfaces of the jth layer
Dkðk ¼ 1;2Þ Coefficient matrices for T and L waves in Eq. (50)
Dp* Dimensionless pressure difference
ðDp*1;Dp*2Þ Allowable range of the pressure difference corresponding to b ¼ �0:5

U*
r ;U

*
q
;U*

z Normalized displacement amplitudes of incremental axisymmetric waves
m Circumferential wave number of non-axisymmetric waves (integer)
vBr ; vB0; vBt Boundaries of Br , B0 and Bt
dA;da;dat Surface elements in Br , B0 and Bt
b;C Left and right Cauchy-Green strain tensors
F; J Deformation gradient tensor and its determinant
rr; r Mass density in Br and Bt (or B0)
q Lagrange multiplier
I; liði ¼ 1;2;3Þ Identity tensor and principal stretches
siiði ¼ 1;2;3Þ Principal Cauchy stresses
_T0; _T0ij Push-forward version of Lagrangian increment _T and its components
H Incremental displacement gradient tensor with respect to B0
G0;G0piqj Instantaneous elasticity tensor and its components
pa Applied pressure on the boundary vB0
R;Q; Z; r; q; z Cylindrical coordinates in undeformed and deformed configurations
la; lb Circumferential stretches of inner and outer surfaces
H;h Thicknesses of undeformed and deformed FG-EHC
W*ðl; lzÞ Reduced strain energy density function for axisymmetric deformations
pin; pou;Dp Pressures on the inner and outer surfaces of FG-EHC in B0 and pressure difference
m1ðRÞ;m2ðRÞ Material parameters depending on the radial coordinate R
b1; b2 Material gradient parameters in affine variations
Y;M Incremental state vector and 6� 6 system matrix
Mij Four partitioned 3� 3 sub-matrices of M

Y2;M2;V2;M2 Incremental state vectors and 4� 4 system matrices for L waves
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