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a b s t r a c t

We consider acoustic wave transmission in a non-axisymmetric waveguide which consists of

a cylindrical resonator and two cylindrical waveguides whose axes are shifted relatively to

each other by an azimuthal angle Δ𝜙. Under variation of the resonator’s length L and fixed

Δ𝜙 we find bound states in the continuum (trapped modes) due to full destructive interfer-

ence of resonant modes leaking into the waveguides. Rotation of the waveguide adds complex

phases to the coupling strengths of the resonator eigenmodes with the propagating modes of

the waveguides tuning Fano resonances to give rise to a wave faucet. Under variation of Δ𝜙
with fixed resonator’s length we find symmetry protected trapped modes. For Δ𝜙 ≠ 0 these

trapped modes contribute to the scattering function supporting high vortical acoustic inten-

sity spinning inside the resonator. The waveguide rotation brings an important feature to the

scattering and provides an instrument for control of acoustic transmittance and wave trap-

ping.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Bound states in the continuum are localized solutions which correspond to discrete eigenvalues coexisting with extended

modes of continuous spectrum in resonator-waveguide configurations. The existence of such modes was first reported Neu-

mann and Wigner [1] at the dawn of quantum mechanics. To the best of our knowledge, the term bound state (embedded) in

the continuum was introduced by Fonda [2] in the context of resonance reactions in the presence continuous channels. Since

then bound state in the continuum (BIC) has been universally used to designate a state with discrete energy embedded into

the continuum in quantum mechanics [3]. In the field of fluid mechanics, Parker [4,5] is credited to be the first to encounter

resonances of pure acoustic nature in air flow over a cascade of flat parallel plates. Nowadays, BICs are known to exist in various

waveguide structures [6–9]. BICs are of immense interest, especially, in optics thanks to experimental opportunity to confine

light in optical microcavities despite the fact that outgoing waves are allowed in the surrounding medium [10–15].

Independently considerable attention has been paid to BICs in perturbed acoustic waveguides. Many different geometrical

configurations with Neumann boundary conditions have been studied. These studies have shown that the existence of trapped

modes is very sensitive to choice of geometry. Up to now geometrical configurations have been chosen to reduce the effective

dimension of the acoustic waveguide. Chronologically, the following specific perturbed acoustic waveguides were considered.

In 1951 Ursell [16,17] considered a sphere placed on the axis of a cylindrical guide and showed that a trapped mode exists for

a selected radius of the sphere. There is a long history of trapped modes bound below the channel cut-off in two- and three-

dimensional nonuniform waveguides due to the curvature of the waveguide or a localized bulge [18–21]. However the bound

states with isolated discrete eigenvalue embedded in the continuous spectrum above the channel cut-off, BICs, are more unusual.

Evans and Porter first provided convincing numerical evidence for BICs of both Neumann and Dirichlet types in the case of a
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Fig. 1. Cylindrical resonator of radius R and length L with two attached cylindrical waveguides of the unit radius. All lengths are non-dimensional and measured in terms of

the waveguide’s radius rw . The whole waveguide system is (a) axisymmetric, and (b) non-axisymmetric with waveguides misaligned by an azimuthal angle difference Δ𝜙.

rigid circular cylinder placed on the center-plane between parallel walls [22]. Linton and McIver [23] proved the existence of an

infinite number of trapped modes for the case of a cylindrical waveguide containing an axisymmetric obstacle, in particular, a

thin circular sleeve.

Similarly, the dimension is reduced in the acoustical waveguides of a rectangular cross-section in the y0z plane and directed

along the x-axis with an obstacle shaped only in the x0y plane so that the thickness of the perturbed waveguide along the z-

axis d is constant. Then the scattering channels are given by the eigenmodes quantized along the z-axis with corresponding

Neumann boundary conditions at the walls positioned at z = ±d∕2. The utmost case of these structures is a two-dimensional

acoustical waveguide formed by two infinite parallel lines at distance d containing a circle of radius R < d [24] or multiple circles

[25,26] positioned symmetrically between them. The trapped modes are antisymmetric about the centerline of the guide, which

allows us to determine them as symmetry protected BICs. More sophisticated BICs of the same symmetry as the symmetry of

the continuum were demonstrated recently in Refs. [27–30].

A different class is the fully three-dimensional systems. For example, in the case of non-axisymmetric obstacle inside the

cylindrical waveguide Hein and Coch [31] numerically computed acoustic resonances and BICs by solving the eigenvalue prob-

lem. Here we consider similar non-axisymmetric waveguide but without an obstacle inside as shown in Fig. 1. The axisymmetric

case shown in Fig. 1 (a) preserves the orbital angular momentum (OAM) m because of the rotational symmetry around the cen-

tral axis. That effectively reduces the dimension of the waveguide to two. The BICs with m = 0 were shown to occur under

variation of the length of the resonator [29] due to full destructive interference of resonant states [32]. An equivalent explica-

tion of BICs is that under variation of the resonator length, the eigenmodes 𝜓1, 𝜓2 of the same symmetry as the symmetry of

propagating modes of the waveguides become degenerate. Then, the coupling of the superposed state a1𝜓1 + a2𝜓2 with the

continuum can be cancelled by a proper choice of the superposition coefficients a1 and a2 [33]. In the present paper, we choose

a different strategy for the trapping of acoustic waves by means of the rotation of one of the waveguides by the angle Δ𝜙 as

shown in Fig. 1 (b). Then, one of the waveguides acquires azimuthal difference relative to the other that crucially affects inter-

ference of resonances, i.e., Fano resonances and the wave transmission. We show that even tiny rotations result in change of the

transmittance from zero to unit, qualifying the setup as a wave faucet.

2. Acoustic coupled mode theory for open cylindrical resonators

There are different numerical approaches to calculate the transmittance through the waveguide with the mode matching

method. The finite-element method with complex scaling is also widely exploited [28]. Here, we apply the method of effective

non-Hermitian Hamiltonian [34–37] or, equivalently, the coupled mode theory, a physically transparent approach to diagnose

BICs. The theory is based on the Feshbach projection technique [34] of the total space, resonator plus waveguides, onto the

subspace of the resonator that results in the effective non-Hermitian Hamiltonian. Each subsystem possesses the rotational

symmetry and obeys the stationary Helmholtz equation in the cylindrical system of coordinates[
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for the non-dimensional velocity potential 𝜓 , where the non-dimensional coordinates r and z express the respective distances

normalized by the waveguide radius rw. The dimensionless frequency 𝜔 is defined through the dimensional frequency �̃� as

follows𝜔 = �̃�rw∕c0, and c0 is the sound speed [28].

The propagating modes in the sound hard cylindrical waveguides with Neumann boundary conditions are described by
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