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a b s t r a c t

As every textbook on linear algebra demonstrates, the eigenvectors for the general
eigenvalue problem jK� lMj ¼ 0 involving two real, symmetric, positive definite matrices
K;M satisfy some well-defined orthogonality conditions. Equally well-known is the fact
that those eigenvectors can be normalized so that their modal mass m ¼ fTMf is unity: it
suffices to divide each unscaled mode by the square root of the modal mass. Thus, the
normalization is the result of an explicit calculation applied to the modes after they were
obtained by some means. However, we show herein that the normalized modes are not
merely convenient forms of scaling, but that they are actually intrinsic properties of the
pair of matrices K;M; that is, the matrices already “know” about normalization even before
the modes have been obtained. This means that we can obtain individual components of
the normalized modes directly from the eigenvalue problem, and without needing to
obtain either all of the modes or for that matter, any one complete mode. These results are
achieved by means of the residue theorem of operational calculus, a finding that is rather
remarkable inasmuch as the residues themselves do not make use of any orthogonality
conditions or normalization in the first place. It appears that this obscure property con-
necting the general eigenvalue problem of modal analysis with the residue theorem of
operational calculus may have been overlooked up until now, but which has in turn
interesting theoretical implications.�A

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

We elaborate in this article on the intimate connection that exists between the modal superposition method familiar to
engineers and the method of residues which is typically applied when the governing equations are formulated in the fre-
quency domain and then inverted into the time domain via a Fourier transform. We discover in the process that the residues
contain information about the normalizedmodes without ever making use of any orthogonality conditions, either explicitly or
implicitly. It should be pointed out that although both the system approach based on Fourier inversion and the modal su-
perposition method are indeed very well known, the connection between these topics is conspicuously absent in books on
structural dynamics, wave propagation or linear algebra.

Now, when a structural dynamicist or vibration engineer talks of modes of vibration, s/he refers to patterns of vibration in
a structure of finite size which in the absence of external loads can be observed at a countable, discrete set of frequencies.
Together with these characteristic frequencies, the modes are typically obtained from the solution of an eigenvalue problem
which satisfies somewell-known orthogonality conditions. Except for a few degenerate systems, themodes are guaranteed to
span the full finite or infinite vector space associated with the active dynamic degrees of freedom, so whether one deals with
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discrete or continuous systems, the modal set is complete in the sense that any arbitrary vector can be expressed in terms of
those modes, which allows finding the response to any arbitrary excitation applied anywhere in the system by recourse to
modal superposition. The modal weights in such cases are obtained by expressing the load in terms of the modes, which is
accomplished with the stated orthogonality conditions. In the absence of damping (attenuation), the modal oscillations, once
set up, will continue indefinitely.

On the other hand, a geophysicist dealing with layered half-spaces refers to normal modes as the patterns of waves that
can be observed within wave guides, among which the Love, Rayleigh, and Stoneley waves are the best known. Such motion
patterns also exist in the absence of external sources, yet they do not remain confined to some local vicinity but forever
propagate instead along specific directions. Depending on the dimensionality of the problem, the patterns may decay due to
geometric spreading, even when the soil lacks any material attenuation. Unlike the modes in a finite system, a finite number
of normalmodesmay exist over continuous frequency bands and suchmodes differ only in their characteristic wavelength (or
wavenumber). It seems safe to state that the normal modes in geophysics are rarely obtained from the solution to an
eigenvalue problemdor even understood as resulting from such a problemd but are more often inferred bymeans of search
techniques that look for singularities in some characteristic functions, such as the well-known Rayleigh function. Just as
important, the normal modes are no longer sufficient to fully describe the dynamic response to sources somewhere, although
they may dominate the response at large range. Thus, a geophysicist will typically formulate the solution in terms of integral
transforms from the frequency-wavenumber domain into the space-time domain, aided in part by contour integrations that
take into account the residues at the real poles and supplementing these with so-called branch integrals, the details of which
are irrelevant herein. The important point is that within this context, the evaluation of the response via residues is understood
as being the normal modes method, even though no eigenvalue problem is explicitly being solved and the concept of
orthogonality of modes and the expansion of dynamic sources in terms of such modes weighed by participation factors
remains generally alien to the geophysicist.

In this article we elaborate on the intimate connection between the standard modal superposition method and the system
approach based on residue theory, both of which are referred to by their practitioners as the normal modes method. We rush
to add, however, that both of thesemethods are indeed very well known; the aim herein is not to demonstrate details of these
methods that are known and obvious to all, but to demonstrate a property that is rather obscure and has escaped attention so
far: That it is possible to compute normalized modes at just a few selected spatial locations and to do so without the need to
determine the complete set of modes and without the use of orthogonality conditions.

2. Normal modes vs. residues

Consider the eigenvalue problem involving a pair of N � N; real, symmetric matrices K;M; of which K is either positive
semi-definite or positive definite, and M is always positive definite:

Kfj ¼ ljMfj (1)

Thus, the eigenvalues are always real and non-negative. This eigenvalue problem satisfies the orthogonality conditions

FTKF ¼ K ¼ ML ¼ diag
�
mjlj

�
¼ modal stiffness (2a)

FTMF ¼ M ¼ diag
�
mj

�
¼ modal mass (2b)

If so desired, the modes can also be normalized so that they attain a unit modal mass, i.e.

J ¼ ðMÞ�1=2F ≡
n
jj

o
;jj ¼ fj

. ffiffiffiffiffi
mj

p
; JTMJ ¼ I (3)

Consider now the matrix pencil

Z ¼ K� lM (4)

whose inverse is

H ¼ Z�1 ¼ ðK� lMÞ�1 (5)

Expressed in terms of the modes, this inverse can be written as

HðlÞ ¼ FðK� lMÞ�1FT ¼
�
FM�1=2

�
ðL� lIÞ�1

�
M�1=2FT

�
¼ JðL� lIÞ�1JT ¼ �

XN
j¼1

1
l� lj

jjj
T
j (6)

that is, each component of H is of the form
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