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a b s t r a c t

The interpretation of invariants, such as curvatures which uniquely define the bending and
twist of space curves and surfaces, is fundamental in the formulation of the beam and plate
elastic forces. Accurate representations of curve and surface invariants, which enter into
the definition of the strain energy equations, is particularly important in the case of large
displacement analysis. This paper discusses this important subject in view of the fact that
shear and bending are independent modes of deformation and do not have kinematic
coupling; this is despite the fact that kinetic coupling may exist. The paper shows, using
simple examples, that shear without bending and bending without shear at an arbitrary
point and along a certain direction are scenarios that higher-order finite elements (FE) can
represent with a degree of accuracy that depends on the order of interpolation and/or
mesh size. The FE representation of these two kinematically uncoupled modes of defor-
mation is evaluated in order to examine the effect of the order of the polynomial inter-
polation on the accuracy of representing these two independent modes. It is also shown in
this paper that not all the curvature vectors contribute to bending deformation. In view of
the conclusions drawn from the analysis of simple beam problems, the material curvature
used in several previous investigations is evaluated both analytically and numerically. The
problems associated with the material curvature matrix, obtained using the rotation of the
beam cross-section, and the fundamental differences between this material curvature
matrix and the Serret-Frenet curvature matrix are discussed.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The formulation of the continuum elastic forces using a general continuum mechanics approach requires having a
complete set of position vector gradients in order to properly define the components of the Green-Lagrange strain tensor or
any other general strain measure [1e3]. Having a complete set of position vector gradients requires a full-parameterization of
the continuum; two parameters for planar surfaces, and three parameters for volumes. The use of the general continuum
mechanics approach in the case of fully-parameterized continuum does not require explicit definition of geometric invariants
such as curvature and torsion which uniquely define the geometries of curves and surfaces [4e7].

When gradient deficient continuum models are used, on the other hand, the general continuum mechanics approach
cannot be used. In this case, specialized classical beam and plate theories are used to formulate the stress forces [8e12]. In
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these specialized theories, the geometric invariants, such as curvature and torsion, are often used in the formulation of the
energy expressions. Accurate definitions of these invariants, therefore, is necessary in order to obtain reliable solutions. A
fiber of a beam, for example, can be considered as a space curve that can experience arbitrary bending deformations. The
curvature of the fiber is defined as the magnitude of the curvature vector obtained by differentiation of the unit tangent with
respect to the arc length. The curvature, often in a simplified form, has beenwidely used in the literature in the formulation of
the bending strain energy [8e12].

In the general theory of continuum mechanics, an infinitesimal volume has six independent modes of deformation; three
stretch modes and three shear modes. Simplifying assumptions are used in the development of existing beam theories which
are based, for the most part, on one-dimensional parameterization. For example, in most existing beam formulations, the
beam cross section is assumed to remain planar and rigid. In the case of shear-deformable planar beams, for example, the
shear is defined in terms of the angle between the beam cross section and the normal to the beam centerline. The shear angle
is assumed to be totally independent from the beam bending; a beam, at an arbitrary point and along a certain direction, can
bend without shear and can shear without bending. This basic assumption, which has been used for decades in the
formulation of the beam equations, is also consistent with the general continuum mechanics theory in which pure shear
deformation can be achieved independently from all other deformation types. The phrase “shear without bending” will be
used in this paper to refer to the case in which shear is the dominant mode of deformation experienced by the continuum.
Nonetheless, in some investigations, new curvature definitions that kinematically couple the curvature and shear were
introduced [13e15]. In some of these definitions, the angles that define the orientation of the beam cross section are used in
the definition of the curvatures. A transformation matrix expressed in terms of these cross section angles is used in a manner
that resembles the Serret-Frenet frame transformation used to define the curvature and torsion of a space curve [5,6]. In the
Serret-Frenet approach, the tangent, normal, and bi-normal vectors are used to define the Frenet frame which depends only
on and can be uniquely defined using one parameter; the curve arc length.

When using the first and second fundamental theorems of surfaces [5,6], it is important to recognize that not all curvature
vectors are associated with bending deformations. Curvature vectors that involve differentiation twice with respect to the
same coordinate line describe the change of the orientation of tangent vectors to fibers and can be associated with bending
deformation as will be discussed in this paper. Curvature vectors that result from the differentiation with respect to two
different coordinate lines (parameters) can appear in the formulation of the shear as will be demonstrated in this paper.

The absolute nodal coordinate formulation (ANCF) fully-parameterized elements allow for developing new and more
general beammodels and for investigating the assumptions used in the classical beam and plate theories [16e29]. The use of
the position vector gradients as nodal coordinates allows for relaxing the assumptions of small deformation used for most
conventional beam and plate elements [30e32]. ANCF position gradient vectors capture accurately arbitrarily large rigid body
rotations and high speed spinning motion [33e35]. For this reason, such general elements are suited for evaluating the as-
sumptions used in the classical approaches.

This study, which is concerned with the interpretation of the geometric invariants such as the curvature in the FE large
displacement analysis, is motivated by the fact that the definition of curve and surface invariants is fundamental for the
accurate beam and plate stress force formulation. The focus in this paper will be on the analysis of planar beams in order to
avoid the complexities of the three-dimensional analysis and to be able to obtain simple expressions that can shed light
clearly on different geometric definitions. The specific contributions of this paper can be summarized as follows:

1. It is demonstrated analytically, in Section 2, that the position vector gradients can be used to represent the case of shear
without bending. To this end, each of the gradient vectors is defined in terms of a stretch coefficient and an angle that
defines the orientation of the gradient vector. It is shown that in the case of shear, the transverse gradient vector can have
an arbitrary orientation with respect to the normal to the beam fiber. The shear can be non-uniform, while the beam fiber
remains straight, demonstrating that bending cannot be defined in terms of the derivative of the shear angle.

2. In Section 3, the accuracy of using the FE approximation in the representation of the shear without bending (SWB) and
bending without shear (BWS) is examined. To this end, a fully-parameterized ANCF beam element is used to formulate the
beam problem [20]. It is shown that higher-order elements can be used systematically to obtain the SWB and BWS sce-
narios in the case of arbitrarily large rigid body displacement.

3. It is shown in Section 4 that a curvature vector obtained by differentiation with respect to two different coordinate lines
(parameters) may not be associated with bending deformation, and such a curvature vector can appear in the formulation
of the SWB problem. This curvature vector can be related to the derivative of the angle that defines the orientation of the
cross section with respect to the arc length parameter.

4. Based on the conclusions drawn from the analysis presented in Sections 2 and 3, the definition of the material curvature
used by other researchers is evaluated in Section 4 [13e15]. Despite the fact that the material curvature is defined in terms
of the angle that defines the orientation of the beam cross section, the material curvaturewas used by some researchers to
formulate the beam bending forces.

5. The fundamental differences between the Serret-Frenet approach and the material curvature approach, that employs the
cross section orientation matrix, are highlighted in Section 4 of the paper.
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