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a b s t r a c t

This study investigates the use of fractional order differential models to simulate the

dynamic response of non-homogeneous discrete systems and to achieve efficient and accu-

rate model order reduction. The traditional integer order approach to the simulation of non-

homogeneous systems dictates the use of numerical solutions and often imposes stringent

compromises between accuracy and computational performance. Fractional calculus provides

an alternative approach where complex dynamical systems can be modeled with compact

fractional equations that not only can still guarantee analytical solutions, but can also enable

high levels of order reduction without compromising on accuracy. Different approaches are

explored in order to transform the integer order model into a reduced order fractional model

able to match the dynamic response of the initial system. Analytical and numerical results

show that, under certain conditions, an exact match is possible and the resulting fractional

differential models have both a complex and frequency-dependent order of the differential

operator. The implications of this type of approach for both model order reduction and model

synthesis are discussed.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical accuracy and computational efficiency have been long-standing challenges in the simulation of dynamical sys-

tems. Numerical solutions of complex continuous systems with non-trivial boundary and loading conditions typically require

a discretization process to obtain lumped parameter models. The more complex the property spatial distribution (e.g. exter-

nal loads, material or geometric parameters, boundary conditions), the higher the level of discretization needed to achieve a

satisfactory representation of the original continuum system. The increased discretization directly impacts the computational

performance and, for large systems, limits the level of achievable accuracy. This issue is even more accentuated when dealing

with active control or real-time prediction of the dynamic response of systems under operating conditions for which fast state

estimation is a key requirement.

Over the last several decades, these challenges have motivated the rapid growth and development of methodologies for

the synthesis of computationally efficient approaches able to reduce the overall size of the models (i.e. of the total number of

Degrees Of Freedom - DOF) while maintaining high numerical accuracy and fidelity to the actual dynamics. These techniques,

referred to as model order reduction, are typically pursued when the dynamic response is sought only at selected locations (the

so-called active DOFs) such that the DOFs associated with the remaining locations can be omitted. The reduction procedure
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is not trivial because it must account for the coupling between active and omitted DOFs in order to not change the underlying

dynamics of the system.

Many sources in the literature [1–3] provide an extensive review of reduction techniques across a variety of disciplines. In

the following, we concentrate only on applications to structural dynamics since this is the emphasis of our study. One widely

used technique is Guyan reduction. This approach is also known as static reduction because it does not account for the system

inertia and is therefore limited to statics. Reduction techniques for dynamic systems (therefore accounting for the system’s iner-

tia) are often based on mode superposition or component mode synthesis [1]. Perhaps one of the most widely used component

mode synthesis techniques is the Craig-Bampton method [4,5]. The Craig-Bampton method divides the system into several sub-

structures which are required to be compatible along their shared boundaries. Assuming these boundaries are held fixed, the

Craig-Bampton method is able to combine the motion of these boundary points with the displacement modes of the substruc-

tures (known as constraint modes). The dynamics of the system can be reduced to a set of both fixed-interface and constraint

modes [6].

Many existing order reduction techniques can only provide an approximation of the local response. For instance, the accuracy

of the approximation of the Craig-Bampton method is strictly dependent on the number of modes retained in the modal basis.

The truncation of the basis should be assessed with respect to either the modal densities associated with the omitted modes or

the dynamic content that should be transferred to the active degrees. In a similar way, enlarging the modal basis (i.e. extending

the truncation order) comes at the expense of computational performance.

To address these limitations, we explored a reduction order technique based on fractional calculus. We will show that while

fractional models contain less DOFs than the original system, often times the dynamic response can be matched exactly at the

active degrees. This is an important advantage of our fractional order reduction over reduction order techniques typically used.

In addition to the order reduction capabilities, we anticipate that the proposed approach has possible advanced applications to

the system identification based only on measured or experimental data. As an example of these capabilities, we will show the

application of the fractional models to perform broadband system identification of discrete parameter systems.

While the mathematics of fractional calculus has been extensively studied in the past century, applications are relatively

recent. In particular, fractional calculus has seen applications in engineering areas such as vibration control [7,8], visco- and

thermo-elasticity [9–11], and wave propagation in complex media [12–14]. The reader is referred to [15–17] for detailed reviews

on the fundamentals of fractional calculus. In Appendix A, we define some basic fractional calculus quantities. We anticipate

that the methodology discussed below produces fractional differential models of complex and frequency-dependent order.

Love [18], Ortigueira [19], Ross [20], and Andriambololona [21] among others have developed the mathematics of complex

fractional derivatives as well as potential uses. Adams [22] and Neamaty [23] have developed solutions to certain complex

fractional order differential equations. Other authors including Atanackovic [24], Makris [25], and Park [26] have successfully

applied complex fractional calculus to viscoelasticity. While the mathematics of complex fractional calculus has been explored

and developed, its connection to the actual physical processes being represented can be difficult to grasp. Perhaps Makris has

one of the clearest interpretations of a complex order derivative: “… one may interpret the complex derivative of an arbitrary

function as the superposition of complex derivatives of harmonic functions. Evidently, complex-order derivatives modulate the phase

and amplitude of harmonic components of a time-dependent function in a more complicated way than real-order derivatives. An

important difference between real-valued and complex-valued time derivatives is that phase modulation in the latter case is frequency

dependent whereas in the former is not” [25]. As pointed out here by Makris, complex fractional derivatives can produce functions

whose amplitude and phase are both frequency-dependent; this attribute plays a key role in the development of the fractional

models. Valerio [27,28] gives a thorough review of complex and variable-order fractional derivatives through the use of Laplace

transforms and transfer functions.

The remainder of the paper is structured as follows: in the next section, we present how to obtain an undamped fractional

single degree of freedom model having the same dynamic response of an integer damped single degree of freedom. While this

does not technically qualify as order reduction, it illustrates the basic methodology that will be used throughout this work. Then,

we present the procedure to reduce a multiple integer-order degree of freedom system to a single fractional-order degree of

freedom system. This represents the fundamental step of the order reduction methodology. Next, we extend the methodology

to reduce a M-degree of freedom integer-order system to a N-degree of freedom fractional-order model where N < M. Lastly,

we briefly discuss how the same methodology can be used in the frame of system identification and we show how to synthesize

accurate fractional dynamic models based only on the knowledge of numerically obtained or experimentally measured data.

An important remark should be made concerning the terminology used in this paper. It is well-known that, for integer order

systems, the overall order of the system is strictly related to the number of degrees of freedom because each individual degree

is assumed to behave as a second order system. Therefore, order and dimension are typically considered as equivalent concepts

and used interchangeably. On the contrary, due to the infinite dimensional character of a fractional derivative, the connection

between the overall order of a system and the number of its physical degrees of freedom is somewhat more ambiguous. Such a

discussion goes well beyond the scope of this paper and we simply highlight that, in the remainder, the term degrees of freedom

will refer to the number of discrete masses while the term order will refer to the order of the individual differential equations.

2. Reduction to SDOF fractional systems

This section discusses the fundamental approach to obtain a fractional undamped single degree of freedom (SDOF) model

exhibiting a dynamic behavior equivalent to an integer damped single degree of freedom system. To facilitate the understanding
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