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a b s t r a c t

This paper presents the results of an investigation on the dynamics of unforced and vertically

forced rocking elliptical and semi-elliptical disks. The full equation of motion for both rocking

disks is derived from first principles. For unforced behavior, Lamb’s method is used to derive

the linear natural frequency of both disks, and harmonic balance is used to determine their

amplitude-dependent rocking frequencies. A stability analysis then reveals that the equilibria

and stability of the two disks are considerably different, as the semi-elliptical disk has a super-

critical pitchfork bifurcation that enables it to exhibit bistable rocking behavior. Experimental

studies were conducted to verify the trends. For vertically forced behavior, numerical inves-

tigations show the disk’s responses to forward and reverse frequency sweeps. Three modes

of periodicity were observed for the steady state behavior. Experiments were performed to

verify the frequency responses and the presence of the three rocking modes. Comparisons

between the experiments and numerical investigations show good agreement.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic behavior of rocking disks is a classical problem that has been studied by scientists, engineers, and mathe-

maticians. The problem can be investigated from a variety of perspectives, and is a useful tool for providing insights into the

dynamics of other, more complicated systems. Two of the most well-known cases of rocking disk problems are Euler’s disk and

the rattleback, which both exhibit unusual dynamical behavior. Euler’s disk refers to a circular disk of uniform density that rolls

on a flat surface, and the system initially received interest in the scientific community because the speed of the disk’s rolling

paradoxically increases as energy is dissipated from the system. Moffat conducted the initial study on the dynamical behavior

of Euler’s disk, and he hypothesized that the paradoxical nature of the system was a result of viscous dissipation caused by the

sheared air between the disk and the ground [1]. Moffatt was able to discover a finite-time singularity that explained the phe-

nomenon. This seminal work sparked several additional studies which questioned whether the primary dissipative elements in

the model should be viscous air effects or sliding friction at the contact point [2–4], and current opinions tend to support the

sliding friction hypothesis [5]. Several studies have been conducted in recent years in an attempt to match experimental results

with theory [5,6].

The rattleback is a perplexing device that was first discovered at ancient Celtic archaeological sites in the 19th century. In

fact, rattlebacks were initially referred to as celts due to the origin of their discovery. Rattlebacks come in a variety of shapes

and sizes, but can typically be described as mechanical tops with a smoothly curved surface and a preferred direction of spin

caused by geometric asymmetry. If the rattleback is spun in its stable direction, it simply maintains spin in that direction until
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the motion is damped out. However, if the rattleback is spun in its unstable direction, it begins to “rattle” and then reverses the

direction of its spin to the stable direction. Some rattlebacks can be designed so that they are unstable in both directions and

can therefore exhibit multiple spin reversals. The dynamics of rattleback motion were first derived in the late 1890s by Walker

[7]. There was a renewed interest in rattleback dynamics in the 1980s, and several interesting studies were published. Lindberg

and Longman verified Walker’s model through numerical simulation [8], Kane and Levinson modeled the effects of dissipation

on rattleback dynamics [9], Bondi classified different types of rattlebacks based on their behavior [10], and Garcia and Hubbard

validated their rattleback model with experimental results [11].

This paper will focus on another class of rocking disk problem that was initially studied by Lamb in the early 1900s and

has received somewhat less attention than Euler’s disk or the rattleback. In his initial work, Lamb derived the linear natural

frequency of an arbitrary disk with uniform density and a symmetric cross section [12]. This linear natural frequency is the

rocking frequency of the disk for small angles of oscillation. Satterly used Lamb’s equation to derive the linear natural frequency

of an elliptical disk [13], and Balachandran derived the linear natural frequency of a semicircular disk by deriving the system’s

equation of motion [14]. A recent study used rapid prototyping technology to experimentally validate Lamb’s method for calcu-

lating the linear natural frequency of rocking semicircular and parabolic disks [15]. These studies focused on linear analysis, and

they largely neglected the effects of nonlinearity on the dynamic behavior of the disk. This paper builds upon these previous

studies and shows how nonlinearity significantly influences the dynamics of rocking elliptical and semi-elliptical disks through

bifurcations and amplitude-dependent phenomena.

Another perspective that has not yet been fully investigated is the behavior of rocking disks under vertical excitations. Maz-

zoleni analyzed the stability and bifurcations for the unforced behavior of rocking disks, but did not fully derive the equations of

motion or investigate forced behaviors [16]. Due to the geometry of an elliptical or semi-elliptical rocking disk, a small vertical

excitation can be transferred into magnified horizontal and rotational movements for the purpose of energy harvesting. This

transmission of translational excitation into rotational motion could have a wide range of applications. For example, pendu-

lums are widely used for energy harvesting but few of them are vertically driven due to gravity in the vertical direction. Mann’s

bistable magnetic pendulum [17], Toh’s marine energy harvester [18] and Wang’s weighted-pendulum-type electromagnetic

generator [19] use either horizontal or rotational excitation to drive pendulums. Fortunately, if a pendulum is pinned to a rock-

ing disk, the vertically excited rocking motion could easily drive the pendulum. Mounting a pendulum to a ship is one of the

simplest methods to take advantage of a ship’s rocking motion to harvest potential energy from a wave [20]. Therefore, it is

worthwhile to investigate the response of a driven rocking disk and find ways to alter its frequency response.

The remainder of this paper is organized as follows. Section 2 derives the equation of motion for the forced rocking elliptical

and semi-elliptical disks. Section 3 investigates the unforced behavior for both rocking elliptical and semi-elliptical disks. It

includes four subsections that: 1) analyze the linear natural frequencies of disks using Lamb’s method, 2) derive an approximate

analytical solution for the disk’s amplitude-dependent rocking frequency, 3) analyze the equilibria and stability of the rocking

disks using phase plane analysis and the Lagrange-Dirichlet theorem [21], and 4) perform experimental validation of the linear

natural frequencies and bifurcation trends. Section 4 investigates the vertically forced behavior of a monostable semi-elliptical

disk. In this section, the rocking disk’s responses to forward and reverse frequency sweeps are shown from simulations and

three modes of periodicity for steady states were observed. Experiments were performed to verify the frequency responses and

the presence of the three rocking modes and two cut-off frequencies.

2. Equation of motion

This section derives the equation of motion for rocking elliptical and semi-elliptical disks that are forced by vertical exci-

tations. The geometries for these disks that will be analyzed in this paper are depicted in Fig. 1. The surfaces of the disks are

defined by x2∕a2 + y2∕b2 = 1, where a and b are the major and minor radii of the disks, respectively. When deriving the equation

of motion, the case of the semi-elliptical disk was used, since the governing equation for the elliptical disk can be obtained from

the governing equation for the semi-elliptical disk through two parameter substitutions. Fig. 2 shows the upright and displaced

position of a rocking semi-elliptical disk with a vertical excitation applied to the base. It is assumed that the disk rolls without

slip on the base.

Fig. 1. Geometries of the elliptical and semi-elliptical disks with surfaces defined by x2∕a2 + y2∕b2 = 1. For the elliptical disk, the geometric center O and the center of

mass G coincide.
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