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a b s t r a c t

The paper addresses the classical problem of time-harmonic forced vibrations of a fluid-filled

cylindrical shell considered as a multi-modal waveguide carrying infinitely many waves.

The forced vibration problem is solved using tailored Green’s matrices formulated in terms

of eigenfunction expansions. The formulation of Green’s matrix is based on special (bi-

)orthogonality relations between the eigenfunctions, which are derived here for the fluid-

filled shell. Further, the relations are generalised to any multi-modal symmetric waveguide.

Using the orthogonality relations the transcendental equation system is converted into alge-

braic modal equations that can be solved analytically. Upon formulation of Green’s matri-

ces the solution space is studied in terms of completeness and convergence (uniformity and

rate). Special features and findings exposed only through this modal decomposition method

are elaborated and the physical interpretation of the bi-orthogonality relation is discussed

in relation to the total energy flow which leads to derivation of simplified equations for the

energy flow components.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we address the classical problem of time-harmonic wave propagation in a thin elastic fluid-filled cylindrical

shell loaded by an inviscid compressible fluid without mean flow. This is a subject broadly covered in literature on applied

mathematics, see e.g. Refs. [1–6]. Among other applications, this formulation is used to address transmission of vibro-acoustic

energy which is of primary interest in e.g. the oil and gas industry as well as in larger pumping systems conveying waste water

or distributing domestic water to inhabitants. While the analysis of free waves in such a waveguide is a well-established sub-

ject, a forced response in various excitation conditions has not yet been fully explored. To cover arbitrarily distributed acoustic

and structural sources it is convenient to derive Green’s matrices i.e. to study the response to an excitation modelled as delta-

functions. In this formulation of the problem it is expedient, on the one hand, to consider detailed analysis of the energy redis-

tribution and mode conversion in the near-field to gain additional physical insight. On the other hand, the mathematical issues

of completeness and convergence need to be addressed.

To understand the energy redistribution and mode conversion in the near-field e.g. from pump to pipe or across flange con-

nections, an accurate coupled vibro-acoustic model of an infinite pipe needs to be formulated. In this paper we adopt the tailored

Green’s function/matrices as introduced in Ref. [5]. These functions deviate from the canonical free-space Green’s function of

acoustics, in that they satisfy additional boundary conditions – continuity at the fluid-structure interface. Here we consider only
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Nomenclature

cfl Fluid sound speed - [m s−1]

cstr Structural sound speed ≡ √
E

𝜌str(1−𝜈2) - [m s−1]

E Young’s modulus - [Pa]

h Shell thickness - [m]

k Non-dim. axial wave-number ≡ k̃R

m Non-dim. circumferential wave-number

Nu Non-dim. axial energy flow ≡ 1−𝜈2

EhRcstr
Ñu

Nv Non-dim. torsion energy flow ≡ 1−𝜈2

EhRcstr
Ñv

Nw Non-dim. transverse energy flow ≡ 1−𝜈2

EhRcstr
Ñw

Nw′
Non-dim. bending energy flow ≡ 1−𝜈2

EhRcstr
Ñw′

N𝜗 Non-dim. acoustic energy flow ≡ 1−𝜈2

EhRcstr
Ñ𝜗

N
∑

Non-dim. total energy flow ≡ 1−𝜈2

EhRcstr
Ñ
∑

p Non-dim. acoustic pressure ≡ 1

c2
fl
𝜌fl

p̃

P Non-dim. amplitude of acoustic pressure

ql Non-dim. external structural forces ≡ 1−𝜈2

E
q̃l

(l = 1, 2, 3)

Q4 Non-dim. moment ≡ 1−𝜈2

Eh2 Q̃4

Ql Non-dim. forces ≡ 1−𝜈2

Eh
Q̃l (l = 1, 2, 3)

l Non-dim. amplitude of structural forces/-

moment (l = 1,… , 4)

r Non-dim. radial coordinate ≡ r̃

R
r0 Excitation point in r

R Shell radius - [m]

T Non-dim. external acoustic source ≡ R

cfl
T̃

u Non-dim. axial displacement ≡ ũ

R
U Non-dim. axial amplitude

v Non-dim. circumferential displacement ≡ ṽ

R
V Non-dim. circumferential amplitude

w Non-dim. radial displacement ≡ w̃

R

W Non-dim. radial amplitude

w′ Non-dim. rotation

W′ Non-dim. rotation amplitude

x Non-dim. axial coordinate ≡ x̃

R

𝛾 Non-dim. sound speed ratio ≡ cstr

cfl

𝜗 Non-dim. acoustic velocity ≡ 𝜗
cfl Non-dim. amplitude of acoustic velocity

𝜃 Non-dim. circumferential coordinate

𝜅 Non-dim. radial wave-number ≡
√

k2 + 𝛾2Ω2

𝜇 Non-dim. thickness-to-radius ratio ≡ h

R
𝜈 Poisson’s ratio - [−]

𝜉 Excitation point in x

𝜌fl Fluid density - [kg m−3]

𝜌str Structural density - [kg m−3]

𝜌 Non-dim. density ratio ≡ 𝜌fl

𝜌str

𝜙 Non-dim. velocity potential ≡ 𝜙
cflR

Φ Non-dim. amplitude of velocity potential

𝜔 Angular frequency - [rad s−1]

Ω Non-dim. frequency ≡ 𝜔R

cstr

Jm(x) Bessel-function of first kind of order m ∈ ℤ
𝛿(x) Dirac delta-function

sgn(x) Signum function|x| Module of x

i Complex operator

* Complex conjugated

′ Derivative with respect to x

𝐔 U as a matrix or vector
− Indicates modal coefficients
∼ Indicates dimensional quantities
0F Indicates loading condition
(n)
m Modal components of circumferen-

tial, m, and axial wave-number, n, e.g.(
k
(n)
m ∈ ℂ|n,m ∈ ℤ, n ≠ 0

)

the tailored Green’s matrices (excitation by ideal sources), while the generation of vibro-acoustic energy internally in a pump is

not treated here. Due to the versatility of Green’s formulation, see e.g. Refs. [7,8], we can easily generalise to arbitrary sources

generated by a pump or to finite and/or compound pipes with arbitrary boundary conditions and/or transition properties using

the Boundary Integral Equations Method (BIEM), see e.g. Refs. [2–4,7–14]. However, in the heavy fluid-loading format the prob-

lem becomes transcendental and the accuracy of the near-field solution is compromised by the computational efficiency when

solved using the conventional weak solution form (integral average). Thus, the purpose of this paper is to improve both accuracy

and computational efficiency of the solution by solving the forced vibration problem using modal decomposition (strong form).

The formulation of Green’s matrix is based on the eigenfunction expansion method with the eigenvalues derived from the

dispersion equation. This method is the most commonly used method in vibro-acoustic problems. In Refs. [3,15–17] authors

have employed specially derived orthogonality relations to decompose the governing equations into uncoupled algebraic modal

equations which can easily be solved analytically; providing the strong solution form of Green’s matrix. The decomposition is

analogue to the decomposition of circumferential modes by orthogonality of trigonometric functions, see e.g. Refs. [2–4,13,14],

however, with more advanced orthogonality relations between the involved eigenfunctions. In Ref. [3] this modal decomposition

method was used for the acoustic duct where the ‘more advanced’ orthogonality relation reduces to orthogonality of cylindrical

functions i.e. Bessel-functions, see relation in e.g. Refs. [18–20]. On the other hand, similar relations have been derived in Refs.

[16,17,21–28] for plates, strips, layers, laminates, springs, beams, shells etc. and facilitated in e.g. Refs. [15–17] to analytically
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