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a b s t r a c t

Input-output partial feedback linearisation is demonstrated experimentally for the first
time on a system with non-smooth nonlinearity, a laboratory three degrees of freedom
lumped mass system with a piecewise-linear spring. The output degree of freedom is
located away from the nonlinearity so that the partial feedback linearisation possesses
nonlinear internal dynamics. The dynamic behaviour of the linearised part is specified by
eigenvalue assignment and an investigation of the zero dynamics is carried out to confirm
stability of the overall system. A tuned numerical model is developed for use in the
controller and to produce numerical outputs for comparison with experimental closed-
loop results. A new limitation of the feedback linearisation method is discovered in the
case of lumped mass systems e that the input and output must share the same degrees of
freedom.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The growing demand for increased performance of mechanical and aerospace systems with reduced weight and fewer
emissions leads to research initiatives that aim to exploit the characteristics of nonlinear systems. While the control of linear
systems is well understood, most engineering systems behave nonlinearly, at least to some degree, and require the appli-
cation of a nonlinear controller if the system is to behave according to design requirements. Non-smooth nonlinearities such
as bi-linearity and freeplay are commonplace in joints and connections, but difficult to treat because of the abrupt changes in
dynamic behaviour that occur as parts come into contact and separate. In this paper non-smooth nonlinearity is treated by the
method of feedback linearisation [1e3], a nonlinear control method capable of transforming a nonlinear system into a linear
one by appropriate choice of input. In complete input-output feedback linearisation all the states of a nonlinear system are
linearised. This differs from the more general problem of partial input-output feedback linearisation, inwhich only the input-
output map is linearised and the number of outputs is fewer than the number of states of the system. The remaining part of
the system that has not been linearised generally remains nonlinear and is uncontrollable. Therefore its stability must be
determined by checking the so-called zero dynamics; equivalent to a linear time invariant (LTI) system beingminimum phase
when all its zeros are in the left-hand half-plane. The method has found application in numerous engineering fields including
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the following: robotics, to control the trajectory and the body posture of a mobile robot [4e7]; electric motors, to stabilise the
position and velocity of the rotor and to control the voltage [8e12]; in fuel cells, to control the pressure of hydrogen and
oxygen [13]; and in actuation systems with valve nonlinearities [14,15]. In aerospace engineering the technique is used to
control drones [16,17] and to suppress wing flutter [18e20]. All these examples relate to smooth nonlinearities in the system
or in the input, which means that there are no non-differentiable points in the nonlinear characteristic. The application of the
feedback linearisation control to non-smooth nonlinear systems is an area open to research, possibly because the smoothness
of the nonlinearity was originally said to be a requirement for the application of feedback linearisation. Tao and Kokotovic [21]
proved this constraint to be unnecessary at least in cases where the non-smooth nonlinearity is in the input and has a dead
zone, piecewise, backlash or hysteresis characteristic - for these cases they also developed adaptive methods. Jiffri et al. [22]
developed the theory of complete and partial feedback linearisation to nonlinear aeroelastic systems with structural non-

Nomenclature

A State-space matrix for the zero dynamics
b Input vector
C Viscous damping matrix
Cnl Nonlinear damping matrix
f objective function for linear model optimisation
fCnl Nonlinear damping force
fKnl Nonlinear stiffness force
fn Desired natural frequency
fðtÞ Excitation force
g1; g2 left and right gaps: nonlinear spring
gc;i Parameter correction factor
gq Force distribution vector
K Stiffness matrix
Knl Nonlinear stiffness matrix
kg;i Stiffness of the spring between ith degree of freedom and the floor
kij Stiffness of the spring between ith degree of freedom and jth degree of freedom
kg;nl Nonlinear stiffness
H Receptance matrix
l2 Vertical position of the nonlinear spring slider
M Mass matrix
mi Mass of the ith degree of freedom
n Relative degree
q Displacement vector
T Transformation matrix
Tpl Transformation matrix of the controllable linerised coordinates
t Time
uðtÞ Real input
v Virtual input
x State space vector
z Linearised coordinate
zeq Equilibrium point
zid Internal dynamics
zzd Zero dynamics
_� First derivative with respect to time
€� Second derivative with respect to time
ð~�Þ Parameter nominal value
a Viscous damping coefficient for mass proportionality
b Viscous damping coefficient for stiffness proportionality
ε Nonlinear damping force coefficient
h Degree of freedom location of the nonlinearity
UðtÞ Time variant frequency for sweep excitation
un Desired natural frequency
c Output degree of freedom
zn Desired damping ratio
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