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a b s t r a c t

Understanding the linear and nonlinear dynamic behaviour of beams is critical for the
design of many engineering structures such as spacecraft antennae, aircraft wings, and
turbine blades. When the eigenvalues of such structures are closely-spaced, nonlinearity
may lead to interactions between the underlying linear normal modes (LNMs). This work
considers a clamped-clamped beam which exhibits nonlinear behaviour due to axial
tension from large amplitudes of deformation. An additional cross-beam, mounted
transversely and with a movable mass at each tip, allows tuning of the primary torsion
LNM such that it is close to the primary bending LNM. Perturbing the location of one mass
relative to that of the other leads to veering between the eigenvalues of the bending and
torsion LNMs. For a number of selected geometries in the region of veering, a nonlinear
reduced order model (NLROM) is created and the nonlinear normal modes (NNMs) are
used to describe the underlying nonlinear behaviour of the structure. The relationship
between the ‘closeness’ of the eigenvalues and the nonlinear dynamic behaviour is
demonstrated in the NNM backbone curves, and veering-like behaviour is observed.
Finally, the forced and damped dynamics of the structure are predicted using several
analytical and numerical tools and are compared to experimental measurements. As well
as showing a good agreement between the predicted and measured responses, phenom-
ena such as a 1:1 internal resonance and quasi-periodic behaviour are identified.

© 2017 Published by Elsevier Ltd.

1. Introduction

An important consideration for structures operating in dynamic environments is the occurrence of closely spaced ei-
genvalues of the linear normal modes (LNMs) of vibration. This occurrence is particularly significant when eigenvalues
become a function of operating conditions. For instance, closely-spaced eigenvalues can have a significant effect on the aero-
elastic behaviour of wings since the 'closeness' of the eigenvalues affects the velocity at which the onset of flutter occurs [1].
Similarly, closely-spaced eigenvalues can strongly influence the dynamic response of a nonlinear system, and may result in
strong internal resonances between the underlying LNMs and other nonlinear dynamic behaviour [2]. In this context, un-
derstanding the nonlinear interaction of LNMs, and how this interaction is influenced by the of the change of eigenvalues, is
critical for many engineering structures.

* Corresponding author.
E-mail address: ehrhardt.engineering@gmail.com (D.A. Ehrhardt).

Contents lists available at ScienceDirect

Journal of Sound and Vibration

journal homepage: www.elsevier .com/locate/ jsvi

https://doi.org/10.1016/j.jsv.2017.11.045
0022-460X/© 2017 Published by Elsevier Ltd.

Journal of Sound and Vibration 416 (2018) 1e16

mailto:ehrhardt.engineering@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2017.11.045&domain=pdf
www.sciencedirect.com/science/journal/0022460X
www.elsevier.com/locate/jsvi
https://doi.org/10.1016/j.jsv.2017.11.045
https://doi.org/10.1016/j.jsv.2017.11.045
https://doi.org/10.1016/j.jsv.2017.11.045


In near-symmetric linear systems, the eigenvectors associated with closely-spaced eigenvalues can be highly sensitive to
perturbations in the symmetry of the physical structure as described in Ref. [3]. Over larger perturbations in the symmetry,
the phenomenon of mode veering can be observed [4,5]; resulting in the separation of the eigenvalues and the correlation of
the eigenvectors (e.g. off-axis terms in the modal assurance criterion [6] will appear). Examples of mode veering in the static
perturbation of structures have been shown in a pressure vessel [7], cable dynamics [8,9], a pre-stressed frame [10], and
imperfect beams [11] with additional work connecting mode veering and mode localisation [12]. In contrast to the mode
veering phenomenon, if a symmetry preserving change of geometry is applied to a structure, the closely-spaced eigenvalues
will cross instead of veer [5], and no correlation will be observed between the eigenvectors.

It is well known that, for nonlinear systems, internal forces can cause an exchange of energy between nearly commen-
surate LNMs of vibration; termed internal, or auto-parametric, resonances. An in-depth line of work examining 1:2 reso-
nances in a tuneable cantilever beam-mass system is detailed in Ref. [13], for example. For structures exhibiting closely-
spaced eigenvalues, 1:1 internal resonances have been observed in the dynamics of symmetric systems with cubic non-
linearities [14] as well as stretched strings, beams, plates, and rotating disks as discussed by Nayfeh in Ref. [15], for example.
Additionally, it has been shown that as physical parameters of stretched cables and symmetric shallow arches are changed,
whilst preserving symmetry, a crossing occurs between uncorrelated natural frequencies (i.e. symmetric and anti-symmetric
LNMs). At the point of crossing, a 1:1 internal resonance can be realized if the system of interest contains the proper
orthogonality conditions discussed in Ref. [16]. Again, if the symmetry is broken through a change in physical parameters, the
natural frequencies will veer instead of cross. Lacarbonara et al. [11] investigated the nonlinear dynamics of an imperfect
beam at veering, finding 1:1 internal resonances; however, only coupled motions of the modes of vibration were physically
realized in the vicinity of veering contrary to the perfect beams investigated in Ref. [16], where the interaction between the
linear modes was not activated.

The veering/crossing phenomena emphasises the importance of the inertial and stiffness distribution in structures with
closely spaced eigenvalues. In dynamic linear systems, the inertial and stiffness properties of a structure is described using
LNMs (i.e. eigenvalues and eigenvectors). A perturbation of either property directly affects the eigenvalues and eigenvectors,
and veering/crossing can be observed in the correlation between the eigenvectors. In dynamic nonlinear systems, nonlinear
normal modes (NNMs) of vibration [17] are used to describe the inertial and stiffness properties of a structure. As a nonlinear
system experiences a large amplitude of deformation, there is a potential for the effective mass and/or stiffness to change
based on the mechanism of the nonlinearity. In continuous geometrically nonlinear systems, the change in effective mass
and/or stiffness can be observed in the NNM backbone curves, i.e. the loci of NNM responses, as discussed in Ref. [18]. A
deeper understanding of the dynamic motion is also be obtained by projecting the NNMs onto the underlying LNMs of vi-
bration providing an indication of the activation of the nonlinear interaction [19,20]. Nonlinearity often causes shifts in the
response frequencies, which can have the effect of tuning the dynamic behaviour, leading to a nonlinear analogue of the linear
veering behaviour.

This paper considers a clamped-clamped beam with movable masses, which allows the symmetry of the structure to be
broken, and for the torsional inertia to be tuned. This not only enables the linear crossing and veering phenomena to be
investigated, but also its influence on the nonlinear behaviour of the beam, which arises from dynamic tension effects.
Nonlinear veering is demonstrated between closely-spaced eigenvalues of the fundamental bending and torsion LNMs of the
beam. Veering between the fundamental LNMs is demonstrated using a full-order model in Abaqus® in section 2. In section 3,
nonlinear interactions between two LNMs are identified using NNMs calculated from nonlinear reduced order models
(NLROMs). The NLROMs used in this investigation are determined using static load cases and the geometric nonlinear ca-
pabilities of Abaqus® as described in Refs. [21,22]. The resulting NNMs illustrate the undamped amplitude-dependent
nonlinear behaviour between the two LNMs of interest and draw a connection back to the linear veering phenomena.
Specifically, it is shown that, as amplitude increases, the initially bending-dominated NNM shifts in frequency more readily
than that dominated by torsion. This results in the response frequency of the bending-dominated frequency approaches that
of the torsion-dominated LNM. In turn, this leads to NNM responses composed of both bending and torsional components.
This nonlinear veering-like behaviour requires both an asymmetry in the structure, and closely-spaced natural frequencies. In
section 4, analytical and numerical tools are used to find the forced-damped dynamics of the NLROM. This reveals nonlinear
phenomena such as 1:1 internal resonances as well as fold and torus bifurcations. Finally, in section 5, a comparison is made
between the forced responses of the resulting NLROM and the experimentally measured response from a slow sine chirp to
validate the behaviour found in the numerical study.

2. Structure and model description

2.1. Physical description

The structure under consideration exhibits close natural frequencies between the first bending and first torsion LNMs, and
consists of two beams joined in the middle as shown in Fig. 1a. The main beam is clamped at both ends and is joined in the
middle to a cross-beam, which has concentrated masses attached at both ends. The concentrated masses are adjustable
permitting the change of torsional inertiawith limited influence on the bending inertia of the system (i.e. a change in L1 and L2
shown in Fig. 1a). A finite element model was created in Abaqus® to establish a high degree of freedom (DOF) linear model. A
total of 288 B31 beam elements, (6 DOFs at each node [22]) were used to discretise the cross section of each beam resulting in
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