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a b s t r a c t

In 1890, G. H. Bryan discovered the following: “The vibration pattern of a revolving cylinder
or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell.” We
call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections
in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG.
Consequently, in this paper, we assume that all such imperfections are either minimised or
eliminated by some known control method and that only damping is presentwithin the VG.
If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in
this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is
known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise
Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced
into the equations of motion. Using a mixture of numeric and symbolic analysis on the
ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to
an approximate average), that Bryan's law is affected by any form of such damping, causing
pattern drift, compromising the accuracy of the VG.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Bryan's law states the following:

The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder
or bell.

This law was discovered by G. H. Bryan in 1890 [1]. The proportionality constant mentioned in the law is called Bryan's
factor - it is used to calibrate a vibratory gyroscope (VG).

The effects of manufacturing imperfections and flaws in VG have been discussed in many publications. It is known that
damage (cracks) and/or nonaxisymmetry and/ormass and/or stiffness imperfections, cause a frequency split in a VG, affecting
Bryan's effect and decreasing accuracy (see, e.g. Refs. [2e8]). Furthermore, it is known that anisotropic linear damping within
the VG affects Bryan's law ([9,10]), but it is not known whether anisotropic quadratic damping (and higher orders of such
damping) affects Bryan's law.
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Assuming that there are no imperfections in the body of the VG that might cause a frequency split, we show how to
introduce any form of anisotropic nonlinear light damping into the equations of motion of a VG. These results, with no detailed
derivation (unlike our work below), were used in a chapter of the book [11] in order to demonstrate the effectiveness of the
electronic control system introduced there. In order to achieve the results presented in this paper, our assumptions allow us to
obtain an approximation for a generalised Rayleigh's dissipation function. This allows us to symbolically analyse approximated
ODEs of motion via the method of averaging. This symbolic analysis, supported by numerical (graphical) analysis, demon-
strates that any form of anisotropic nonlinear light damping does affect Bryan's law, causing pattern drift, affecting the accuracy
of the gyroscope. This is in sharp contrast to the fact that no form of isotropic light damping affects Bryan's law (as demonstrated
symbolically in this journal [12]).

Notation is discussed in Section 2, while Sections 3 and 4 introduce a generalised version of Rayleigh's dissipation function
that may be modified to model nonlinear tangentially anisotropic damping. In Section 5, fast variable ODEs of motion are
obtained that model combinations of nonlinear anisotropic damping of any order. In Section 6, the system of fast variable
ODEs is transformed into slow variable ODEs. Averaged ODEs of motion are obtained in Section 7 where graphical com-
parisons are made. In Section 8, the averaged ODEs are analysed quantitatively, yielding further insight into nonlinear
anisotropic lightly damped VG behaviour. Conclusions are drawn in Section 9.

2. Notation

For completeness, we repeat some of the notation of [12], because this article is a continuation of the work started there.
Indeed, in this paper we consider an annular disc vibratory gyroscope (DVG) with outer radius q and inner radius p, using the
polar coordinate system Or4 (see Fig. 1 of [12]). We do this because all of the characteristics of a VG may be illustrated in a
technically easy manner when compared to the calculation details of a more complicated VG structure such as [7] for a bell-
shaped system and [13] for a paraboloid system. In general, we might have considered a curvilinear coordinate system Or4k
where k is the axis of symmetry variable, r the radial variable and 4 the tangential variable.

We consider the inertial angular rate of rotation 3U about the axis of symmetry to be small in the sense that it is sub-
stantially smaller than the lowest eigenvalue u0 of the vibrating system, allowing us to neglect Oð 32Þ terms.

Assume that u is radial, v is tangential and w is axial displacement for the particle P in the VG being considered (see, e.g.,
Fig. 1 of [12]), with

u ¼ U½CðtÞcos m4þ SðtÞsinm4�; (1)

v ¼ V ½CðtÞsinm4� SðtÞcos m4�; (2)

w ¼ W ½CðtÞcos m4þ SðtÞsin m4�; (3)

where U;V andW are eigenfunctions of one or two variables appropriate to the coordinate system having the dimensions of
length and m is the vibration mode number or circumferential wave number. The functions CðtÞ and SðtÞ are dimensionless
functions of time t: For a ring or annulus, wewould takew ¼ 0 and assume that all unbalanced forces in the axial direction are
zero. In ([14]) it was demonstrated that for a nonrotating DVG, the eigenfunctions U ¼ UðrÞ and V ¼ VðrÞ remain invariant
under slow rotation. Consequently, U and V may be calculated accurately using a numerical routine as demonstrated in
Ref. [15] or, more tediously, in terms of Bessel and Neumann functions.

For our DVG, the equations of motion are similar to those for more complicated structures such as those derived in Ref. [16]
Eq. (19), where Bryan's law for a layered planet and [7] Eq. (20) where a bell-shaped VG were examined.
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