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a b s t r a c t

The conditions under which significant modal cross-coupling occurs in dynamical systems

responding to high-frequency, broadband forcing that excites many modes is studied. The

modal overlap factor plays a key role in the analysis of these systems as the modal density

(the ratio of number of modes to the frequency bandwidth) becomes large. The modal overlap

factor is effectively the ratio of the width of a resonant peak (the damping ratio times the

resonant frequency) to the average frequency interval between resonant peaks (or rather,

the inverse of the modal density). It is shown that this parameter largely determines whether

substantial modal cross-coupling occurs in a given system’s response. Here, two prototypical

systems are considered. The first is a simple rectangular plate whose significant modal cross-

coupling is the exception rather than the norm. The second is a pair of rectangular plates

attached at a point where significant modal cross-coupling is more likely to occur. We show

that, for certain cases of modal density and damping, non-negligible cross coupling occurs in

both systems. Under similar circumstances, the constraint force between the two plates in

the latter system becomes broadband. The implications of this for using Asymptotic Modal

Analysis (AMA) in multi-component systems are discussed.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

The study of structures responding to high-frequency, broadband forces that excite many modes (a scenario called “the

asymptotic modal limit”) has been ongoing since the advent of Statistical Energy Analysis (SEA) as discussed by Lyon, Maidanik,

et al. [1,2]. Also see the second edition of Lyon’s comprehensive text on the subject: “Statistical Energy Analysis of Dynamical

Systems: Theory and Application” [3]. Note that SEA and similar techniques use a “white noise” approximation of broadband

excitation, which, as Elishakoff notes, is insufficient in fracture mechanics [4]. In this work with orthotropic plates [4], Elishakoff

outlines a technique for estimating plate response in such a limit, noting that real-world plate behavior is a consequence of

an “intermediate between all-round simple support and all-round clamping”. In his review of SEA, Fahy identified that one of

the motivating factors for statistical energy analysis was the design of rockets, where he reported that approximately 500,000

modes exist below 2 kHz in the Saturn V [5]. Even today, modeling that many high-frequency modes is prohibitive in terms of

computational cost. Classical Modal Analysis (CMA) would require very short time steps, and the Finite Element Method (FEM)

would additionally require incredibly fine meshes. Lyon suggested that if equipartition of energy among responding modes

could be assumed, the response of simple systems could be easily estimated [2].

Soon after, Dowell and Kubota proposed Asymptotic Modal Analysis (AMA), a reduction of CMA as the number of excited

modes in a system becomes large [6]. AMA leverages work in statistical mechanics by Crandall [7,8] to separate the spa-

tial contribution of mode shapes to a response from the frequency information contribution. Moreover, it uses the work
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Fig. 1. Schematic of a single rectangular plate experiencing a high-frequency, broadband point excitation.

of Bolotin [9,10] who studied the asymptotic behavior of elastic systems in the frequency domain. In his work, Bolotin found

that for elastic systems such as plates, when the dominant response frequencies are large relative to the fundamental natu-

ral frequency of the system, the boundary conditions contribute very little to the ultimate modal behavior. This justified the

application of AMA to systems with many different boundary conditions. In 1998, Dowell and Tang extended their work to a

plate carrying a concentrated mass/spring system [11]. Most recently, AMA has been used to analyze nonlinear and coupled

dynamical systems [12,13].

In order for systems responding in the asymptotic modal limit to be analyzed using AMA, resonant peaks must be well-

separated. When these peaks overlap, an interaction called modal cross-coupling occurs which offers significant challenges to

both AMA and SEA. In a computational study, Li and Dowell investigated modal cross-coupling for a rectangular aluminum plate

[14]. They found that, for most configurations of the plate, the resonant peaks remain well-separated. However, this may not be

the case for all structures, particularly those with a high modal density and/or large damping. The relationship between these

two system characteristics and some of the consequences of that relationship are studied in the literature, including in the work

of Fahy and Mohammed [15]. In their work, the sensitivity of the Coupling Loss Factor (CLF) to the modal overlap factor 𝜇 in

the context of Statistical Energy Analysis (SEA) of coupled systems (such as two connected beams or two connected plates) is

studied. The modal overlap factor is commonly used in recent investigations in vibroacoustics, such as the work of Denis et al.

[16] where the presence of an Acoustic Black Hole on a beam dramatically increases its modal overlap factor. Other effects of

varying the modal overlap factor have been studied, such as changes in the standard deviation of energy density in the work of

Langley [17]. And finally, the modal overlap factor is used to determine the applicability of reduced order models in situations

where many modes are excited in a system. It is commonly noted in the literature that these models, such as SEA, are applicable

when 𝜇 ≫ 1 [18].

In this work, configurations of dynamical systems that experience significant modal cross-coupling are explored. More specif-

ically, the sensitivity of modal cross-coupling to the modal overlap factor is quantified. In section 2, the problem of a single rect-

angular plate responding in the asymptotic modal limit is revisited. The system behavior for well-separated and cross-coupled

is illustrated. Moreover, some physical criteria necessary for triggering significant cross-coupling are explored. In section 3, the

effect of cross-coupling in multi-component systems is studied. It is important to note that, even if individual components have

well-separated resonant peaks in a given excitation band, the coupled system may not. For example, if component 1 has ΔM1

modes, component 2 hasΔM2 modes, etc., then the coupled system has
∑

iΔMi modes in the same excitation band. Those modes

may interact, and recognizing the influence of cross-coupling in those situations can be very important, especially in a scenario

where a system has 250 modes for every Hz as in the Saturn V rocket.

2. A single rectangular plate

We consider a rectangular plate experiencing high-frequency, broadband forcing that excites many modes, illustrated in

Fig. 1. Note that a two-dimensional prototypical example is used because the modal density of a one-dimensional system (a

beam) drops off rapidly as frequency increases. As a consequence, it is difficult to analyze beams with AMA.

According to Li and Dowell [14], the mean-square response of the plate may be computed by
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where w
2

is the mean-square of the transverse displacement, Hw is the transfer function for the transverse response, ΦF is the

excitation power spectrum (assumed to be uniform in frequency), and𝜔 is frequency.𝜓m is the mth system mode shape,
(

xF , yF

)
is the coordinate set for the point excitation, Mm is the modal mass of mode m1 , and Sm is the characteristic equation of mode m

1 This assumes Kirchoff-Love (KL) thin plate theory. As Goldenveizer [19] and Kaplunov [20] have shown, KL plate theory may break down at higher frequen-

cies. See Appendix B for the derivation of the inertial correction factor described by Goldenveizer for this problem.
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