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a b s t r a c t

High-speed machinery is often designed to pass several “critical speeds”, where vibration
levels can be very high. To reduce vibrations, rotors usually undergo a mass balancing
process, where the machine is rotated at its full speed range, during which the dynamic
response near critical speeds can be measured. High sensitivity, which is required for a
successful balancing process, is achieved near the critical speeds, where a single deflection
mode shape becomes dominant, and is excited by the projection of the imbalance on it.
The requirement to rotate the machine at high speeds is an obstacle in many cases, where
it is impossible to perform measurements at high speeds, due to harsh conditions such as
high temperatures and inaccessibility (e.g., jet engines).
This paper proposes a novel balancing method of flexible rotors, which does not require
the machine to be rotated at high speeds. With this method, the rotor is spun at low
speeds, while subjecting it to a set of externally controlled forces. The external forces
comprise a set of tuned, response dependent, parametric excitations, and nonlinear stiff-
ness terms. The parametric excitation can isolate any desired mode, while keeping the
response directly linked to the imbalance. A software controlled nonlinear stiffness term
limits the response, hence preventing the rotor to become unstable. These forces warrant
sufficient sensitivity required to detect the projection of the imbalance on any desired
mode without rotating the machine at high speeds. Analytical, numerical and experi-
mental results are shown to validate and demonstrate the method.

© 2017 Published by Elsevier Ltd.

1. Introduction

Themain cause for vibration in rotating structures is “imbalance”which is a common term to describe the effect of minute
manufacturing imperfections and deviations of the mass center from the rotation axis. While the structure is rotating, the
imbalance gives rise to rotating forces whose effect on individual modes of vibration is proportional to the projection of the
imbalance axial distribution on each mode. The structure's response is composed of a superposition of all mode shapes
(eigenvectors), where indeed each mode is excited by the projection of the imbalance on the individual mode [1,2].

Imbalance is routinely compensated for by adding (or removing) small correction masses to the structure at pre-defined
axial locations. These corrective masses are placed such that their radial and angular locations eliminate the effect of
imbalance on all the vibration modes within the relevant speed range. These corrective masses are computed solely from
measured vibrations during operation in a so called “balancing process” [3e6]. High speed rotors are usually balanced using
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either the “Influence Coefficient Method”, “Modal Balancing” or the “Unified Balancing Approach” [3e11]. The calculation of
the correction masses using the aforementioned procedures is based on measuring the imbalance response close to critical
speeds, where the vibration levels and sensitivity are sufficiently high. Usually, the balancing procedure requires the rotor to
be spun at the entire anticipated operating speed range during normal service [5].

The requirement to spin the structure at its entire operating speed range is a major obstacle in many cases. Frequently,
reaching high rotation speeds involves conditions that do not enable measurements of the imbalanced response (e.g., jet
engines where operating conditions involve very high temperatures and hazardous environmental conditions surrounding
the rotor). The technical challenges often lead to one of the following:

a. A conservative over-design, trying to keep the critical speeds well above the operating speed.
b. A compromise on the balancingprocedure, by using commercial balancingmachines [6,12,13],which are incapable of rotating

at sufficiently high speeds (e.g., small Jet engines rotate at 100,000 rev/min, while balancingmachines are normally limited to
3000 rev/min.). A commercial balancing machine calculates two correction masses that cancel the reaction forces while
spinning the rotor at a low speed, assuming that the rotor is rigid [3e6]. Although rigid rotor balancing is a very simple and
straightforward procedure, it cannot identify the projection of the imbalance on high speed flexible modes. In fact, in some
cases rigid rotor balancing can even increase the projection of the imbalance on high speed related flexible modes [5,11].

c. Damping elements (e.g., squeeze film, magnetic [14,15]) are proposed as a common design alternative for poorly balanced
rotors, these add weight and often unacceptable complexity.

Nomenclature

aj Amplitude of the response of the jth mode
Aj Response of the jth mode
C Damping and gyroscopic matrix
D Damping matrix
Di Differentiation operator w/r to time scales i
fib Imbalance force vector
fm Modal imbalance force vector
fco Correction masses force vector
Dfm Modal trial mass
Dfib Trial mass vector
~fm Modal imbalance force vector at trial run
fnl Nonlinear force vector
G Gyroscopic matrix
i

ffiffiffiffiffiffiffi
�1

p

I Identity matrix
kp Parametric excitation's stiffness (pumping amplitude)
kpa;min Minimal required pumping amplitude
KpðtÞ Time dependant stiffness matrix
K Stiffness matrix
k3 Cubic stiffness constant
M Mass matrix
q Vector of degrees of freedom
S� Sensitivity of the response to $

t time
a angular location of trial mass
bj Response phase of the jth mode
G Modal stiffness matrix
ε Small non-dimensional number
fn nth mode shape
F Mass normalized modal matrix
4 phase
h vector of modal degrees of freedom
s Detuning parameter
sopt Optimal detuning parameter
un Natural frequency of the nth mode
U Speed of rotation
jj Response phase of the jth mode
zn Damping ratio of the nth mode
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