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a b s t r a c t

Examining the behavior of dynamical systems with many degrees of freedom undergoing
random excitation at high frequency often requires substantial computation. These require-
ments are even more stringent for nonlinear systems. One approach for describing linear
systems, Asymptotic Modal Analysis (AMA), has been extended to nonlinear systems in this
paper. A prototypical system, namely a thin plate carrying a concentrated hardening cubic
spring–mass, is explored. The study focuses on the response of three principal variables to
random, frequency-bounded excitation: the displacement of the mounting location of the
discrete spring–mass, the relative displacement of the discrete mass to this mounting loca-
tion, and the absolute displacement of the discrete mass. The results indicate that extending
AMA to nonlinear systems for input frequency bands containing a large number of modes is
feasible. Several advantageous properties of nonlinear AMA are found, and an additional
reduced frequency-domain modal method, Dominance-Reduced Classical Modal Analysis
(DRCMA), is proposed that is intermediate in accuracy and the cost of computation between
AMA and Classical Modal Analysis (CMA).

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The modeling of dynamical systems responding with many modes has been a subject of interest for quite some time.
Lyon, in 1975, proposed Statistical Energy Analysis (SEA) by assuming equipartition of energy in the active modes in a
responding dynamical system [1]. Consequently, in SEA, energy is uniformly distributed through space as well as these
modes. SEA developed substantially over the following decades, and stimulated other investigations of alternate modal
approaches. Dowell and Kubota laid the foundations of one such method called Asymptotic Modal Analysis (AMA) by
describing the high frequency response of a plate undergoing banded, random excitation [2]. The objective of their
investigations was to verify the results of SEA by considering the limit of CMA when the number of modes responding in a
certain bandwidth becomes large. Transitively, this tests the hypothesis of equipartition of energy.

AMA proved valuable in its own right, as it accurately determined the response of continuous systems experiencing high-
frequency random excitation with dramatically lower computational costs. This accuracy even covered “special points”, such
as the location of an applied point load, where the response is locally greater than that for an arbitrary location of a
continuous system. The behavior of these “special points” relative to other locations in a dynamical system was first studied
by Crandall [3], whose results were corroborated by Dowell and Kubota in subsequent investigations.
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Dowell and Kubota then expanded AMA by studying a plate carrying a concentrated mass [4] and a plate carrying a con-
centrated spring–mass system [5]. The results of these investigations agreed, again, with the work of Crandall, as the mounting
location of the concentrated mass and concentrated spring–mass are found to be “special points” as well. However, the work
done by Dowell and Kubota did more than further verify the increased response at certain points in a system; it suggested that
AMA can be extended to practical systems. Component coupling among subsystems and nonlinearity must be addressed in order
to make this a reality – both of which have proven challenging for SEA as well. Some assert that the issue of coupling between
two or more subsystems has been addressed within SEA [6], but it is the contention of the present author that AMA can deal
with both of these subjects more rigorously and accurately by consideration of system transfer functions among components. For
an informative and well written review of the state of the art for SEA, see the article by Shorter [6].

The present work will modify the system in [5] by adding nonlinearity to the discrete spring–mass element. Consequently, it
is strongly suggested that the reader review references [4,5] for the foundations of this investigation. The effect of the non-
linearity will be principally studied, but the work also seeks to gain further insight into coupled systems in both the linear and
nonlinear regimes and to establish methods that increase accuracy without accruing substantially greater computational costs.

2. Analysis

The prototypical system in question is a plate carrying an undamped, nonlinear spring–mass system.
The schematic of the system illustrated in Fig. 1 is the example by which AMA is extended to nonlinear systems.

Nomenclature

Ap plate area
am modal displacement
D plate bending stiffness
E plate material elastic modulus
F quasi-random time-dependent forcing
F0 force amplitude of one ergodic input

force signal
Fi time-dependent force for ergodic input force

signal i
g coordinate transfer function summation

expression
Hz relative displacement transfer function
Hzþ z0 discrete mass absolute displacement transfer

function
Hz0 spring mounting location transfer function
Hλ constraint force transfer function
h plate thickness
i counter for the ergodic input force signal
k linear spring coefficient
M coupled mode number
M0 discrete mass
Mm modal mass of the plate
Mr representative AMA Mode number
m ordered plate mode number
mx x-direction plate mode number
my y-direction plate mode number
mp plate density per unit area
Nsig total number of ergodic signals used in

the study
ncycles number of cycles studied at steady state dur-

ing the time-march
q coordinate representative variable
Sm characteristic equation
T timespan of the steady-state

simulation window

tss time necessary to reach approximate steady-
state behavior

x0 x-coordinate location of the spring mount
xF x-coordinate location of the applied force
y0 y-coordinate location of the spring mount
yF y-coordinate location of the applied force
z displacement from the spring mount location

to the discrete mass
zþz0ð Þi absolute displacement of the discrete mass

from signal i
Z relative displacement amplitude
z0 displacement of the spring mount location
z0i displacement of the spring mount location

from ergodic signal i
zi relative displacement from ergodic input force

signal i
α nonlinear spring coefficient
ΔM number of modes in a bandwidth
Δω bandwidth
ϵ settling error
ζM coupled modal damping ratio
ζm plate modal damping ratio
ζωð Þc damping ratio–natural frequency constant
λ Lagrange multiplier
ν plate material Poisson's ratio
ρ plate material density
ΦFi input force power spectrum
ϕi random phase shift for the ergodic input force

signal i
ψm mode shape of plate mode m
ω frequency
ω0 spring natural frequency
ωc input band center frequency
ωM natural frequency of coupled mode M
ωm natural frequency of plate mode m
ωmax upper bound of the input frequency band
ωmin lower bound of the input frequency band
ωr representative AMA frequency
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