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a b s t r a c t

When a nonlinear system is expressed in terms of the modes of the equivalent linear
system, the nonlinearity often leads to modal coupling terms between the linear modes.
In this paper it is shown that, for a system to exhibit an internal resonance between
modes, a particular type of nonlinear coupling term is required. Such terms impose a
phase condition between linear modes, and hence are denoted phase-locking terms. The
effect of additional modes that are not coupled via phase-locking terms is then investi-
gated by considering the backbone curves of the system. Using the example of a two-
mode model of a taut horizontal cable, the backbone curves are derived for both the case
where phase-locked coupling terms exist, and where there are no phase-locked coupling
terms. Following this, an analytical method for determining stability is used to show that
phase-locking terms are required for internal resonance to occur. Finally, the effect of non-
phase-locked modes is investigated and it is shown that they lead to a stiffening of the
system. Using the cable example, a physical interpretation of this is provided.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Weakly nonlinear systems typically have an underlying linear structure and the underlying linear modes are often used
to describe the fundamental components of the system. In this paper we investigate the coupling terms that are present in
nonlinear systems when projected onto these linear modes. Specifically, we show how phase-locking conditions in these
terms influence the internally resonant dynamic behaviour. Such phenomena are often observed in forced, lightly damped,
and weakly nonlinear systems with multiple degrees-of-freedom, which represent a variety of physical applications, see for
example [1–4]. Here, internal resonance is defined as the triggering of a dynamic response of a linear mode of the system
that is not subjected to direct external excitation. Many previous authors have considered problems of this type, see for
example [3,4] and references therein.

In this work we will use the normal form technique proposed by [5] for multi-degree-of-freedom forced, damped,
weakly nonlinear systems. This approach leads naturally to the analysis of backbone curves, which define the dynamic
behaviour of periodic motions in the unforced and undamped equivalent system, in the amplitude vs frequency plane. These
are equivalent to the loci of the nonlinear normal modes (NNMs), represented in the amplitude vs frequency projection.
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Many authors have considered the NNMs of, for example, a two-degree-of-freedom spring–mass system [6–8]. Lewan-
dowski [9] pointed out that bifurcations can occur in the backbone curves of this type, and the same author went on to
analyse beam, membrane and plate examples [10]. More recently, the current authors have used backbone curves to study
internal resonance phenomena in systems of coupled nonlinear oscillators [11–14]. In particular, bifurcations of backbone
curves were used to indicate where an internal resonance may by triggered, however additional solution branches have also
been observed that do not trigger internal resonances. As internal resonance is defined here as a behaviour seen in systems
subject to external excitation, and as the backbone curves describe the unforced and undamped responses, it should be
noted that the backbone curves themselves do not exhibit internal resonance. However, backbone curves do uncover modal
interactions which may lead to internal resonances when external forcing and damping are introduced.

Here, the phenomenon of phase-locking between modes during internal resonance is considered in detail. Much of this
discussion is motivated by the example of a taut cable, introduced in Section 2. Expressions for the backbone curves of the
cable are developed in Section 3 by considering the interactions between pairs of linear modes. This analysis reveals that,
depending on the pairs of modes that are considered, the backbone curves are either phase-locked or phase-unlocked.

One significant feature of phase-locking is revealed in Section 4, where it is shown that phase-locked terms are required
for internal resonance. This is demonstrated using an analytical stability analysis, which considers the stability of the zero-
amplitude solution of an unforced linear mode of a general weakly nonlinear system. This general analysis is applied to the
cable example, demonstrating the physical significance of this observation. Lastly, in Section 5, the cable example is used to
investigate the influence of additional, phase-unlocked, modes on the dynamic behaviour of an internally resonant pair of
modes. It is shown that, although this type of mode cannot lead to additional internal resonances, they can impose a
stiffening effect on the system, altering the response of the phase-locked pair. For the cable, this effect can be explained
physically as an increase in the axial tension in the cable, due to the presence of additional modal oscillations.

2. Resonant equations of motion

Weakly nonlinear, multi-degree-of-freedom systems are often expressed in terms of the modal coordinates for the
linearised version of the system, as the linear terms will then be decoupled. However, decoupling of the nonlinear terms is
typically not achieved via a linear modal transform, and hence the modes will not, in general, match the NNMs of the
nonlinear system. Note that here we use the term modes to refer to the modes of the linearised system. A multimodal
nonlinear system may be written in modal coordinates, q, as

€qþΓ _qþΛqþNðqÞ ¼ f: (1)

Assuming linear modal damping, the kth diagonal elements in diagonal matrices Γ and Λ are 2ζkωnk and ωnk
2

respectively
and the vector N contains the nonlinear stiffness terms, and f represents the external excitation vector in modal coordinates.
Here, ζk and ωnk are used to denote the linear damping ratio and linear natural frequency of the kth mode respectively.

To analyse weakly nonlinear systems it is helpful to transform the equations of motion into a new set of coordinates, u,
which describe only the resonant components of the response. The dynamic equation in u is termed the resonant equation
of motion. This can then be used to find steady-state solutions, in terms of modal amplitudes, via an exact harmonic balance
using trial solutions of the form

uk ¼Uk cos ωrkt�ϕk

� �¼Uk

2
ej ωrkt�ϕkð ÞþUk

2
e� j ωrkt�ϕkð Þ ¼ upkþumk; (2)

where ωrk is the response frequency of the kth mode and subscripts p and m indicate positive and negative (minus) complex
exponential terms respectively. The introduction of ωrk allows for the detuning of the kth mode from the linear natural
frequency, ωnk. For a resonant response, this response frequency is typically selected such that it is close to the linear natural
frequency of the mode in question, ωrk �ωnk. Note, however, that response frequencies that are not close to the linear natural
frequencies may also be selected, as the assumption that this detuning is small is not a requirement of the technique. Normal
form analysis allows us to find the periodic responses of a system, as is assumed when computing NNMs, or the steady-state
response to a sinusoidal forcing. Taking the period to be T ¼ 2π=Ω, the response frequency of the kth mode, ωrk, is an integer
multiple of Ω. Likewise, if the system is forced at a single frequency, the forcing frequency is an integer multiple of Ω.

If forcing is near-resonant, i.e. the frequency of the forcing acting on any mode is close to the natural frequency of that
mode, or if there is no forcing, then the resonant equation of motion is found by applying a nonlinear near-identity
transform to Eq. (1) to give

€qþΓ _qþΛqþNðqÞ ¼ f⟶
q ¼ uþhðuÞ

€uþΓ _uþΛuþNuðuÞ ¼ f; (3)

where h is a vector of harmonic components. In the formulation shown in Eq. (3), it is assumed that the forcing and
damping terms are resonant, and so are retained in the equation for u. For further discussion of how non-resonant terms are
handled see [5,15]. Additionally, details of how the harmonics h and the transformed nonlinear terms Nu are found are given
in the Appendix.
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