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a b s t r a c t

A buckled beam with immovable pinned ends is considered. Attached to the beam are
either one concentrated mass, two concentrated masses, a spring–mass system (that
could model a human, robot, or passive vibration absorber), or a horizontal rigid bar with
two vertical end springs (a “bounce–pitch” system that could model an animal or a
vehicle). In the theoretical analysis, the beam is modeled as an inextensible elastica.
Equilibrium configurations are determined first. Then small free vibrations about equili-
brium are examined, and the lowest frequencies and corresponding modes are computed.
The effects of various parameters are investigated, such as the ratio of the span to the total
arc length of the beam, the locations and weights of the attached masses and systems, and
the stiffnesses of the springs. For the case of a single attached mass, experiments are
conducted and the results are compared to the theoretical ones.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This study was motivated by a video of goats frolicking on a wide buckled beam in a pasture [1]. The goats are modeled
here as point masses, or a mass with a spring representing the legs, or a rigid bar with springs. An analysis is developed,
along with experiments on a buckled beamwith an attached mass. Equilibrium shapes and vibration modes and frequencies
are determined. The results may be applicable to curved systems (e.g., buckled beams, arches, and cylindrical panels)
supporting equipment, vehicles, or vibration absorbers.

Papers that have investigated the dynamic behavior of buckled beams with attached masses include [2–7]. In most of
these studies, the beam is subjected to lateral harmonic motion, and dynamic snap-through is examined. A spring–mass
system is sometimes utilized to model the gait of humans or robots [8,9]; its application as a dynamic vibration absorber on
a curved beam/panel is discussed in [10]. The “bounce–pitch” model of a horizontal rigid bar with vertical springs at its ends
has been used to represent a vehicle [11].

The basic analysis will be described in Section 2 and the experiments in Section 3. Numerical results will be presented in
Sections 4–7, respectively, for one attached concentrated mass, two masses, a spring–mass system, and a bounce–pitch
system. Finally, concluding remarks will be given in Section 8.
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2. Formulation

A uniform, wide, linearly elastic beam is considered, modeled as an inextensible elastica. It is unstrained when straight.
The total arc length is L, the modulus of elasticity is E, the moment of inertia of the cross section is I, Poisson's ratio is ν, and
the weight per unit length is W. Since the beam is wide (like a panel), E will be replaced by E0 ¼ E=ð1�ν2Þ in the usual
elastica equations [12].

The pinned ends are pushed together until the beam buckles upward with span (base length) B. Then the ends are not
allowed to deflect. At arc length S and time T, the horizontal coordinate is XðS; TÞ, the vertical coordinate is YðS; TÞ, and the
rotation is θðS; TÞ, as shown in Fig. 1. On the positive face of the cross section, the internal horizontal force is PðS; TÞ, positive
if compressive, the internal vertical force is Q ðS; TÞ, positive if downward, and the bending moment is MðS; TÞ, positive if
counter-clockwise. Fig. 1 includes a concentrated weight W0 at S¼C.

Damping is neglected. The governing equations for the buckled beam are [13]
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where g is the gravitational acceleration.
The numerical analysis is conducted in terms of nondimensional quantities, including
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whereω is a dimensional vibration frequency and r is the ratio of an attached weight to the total beamweight. The variables
are written as the sum of equilibrium and dynamic components. The nonlinear equilibrium equations are solved first. Small
free vibrations about equilibrium are considered, so that the dynamic equations are linearized in the dynamic components.
Numerical results are obtained with the use of a shooting method involving subroutines NDSolve and FindRoot in Math-
ematica [13].

Due to symmetry of the buckled beam when there is no attachment, it is only necessary to consider attachments added
symmetrically or on the left side (for instance) of the beam. For example, in Fig. 1, the nondimensional location of the
attached weight from the left support is c, with 0oco1, and results for 0:5oco1 (right side) can be deduced from those
for 0oco0:5 (left side).

3. Experiments

A thin polycarbonate strip was used for the experiments. The specific weight was 11.6 kN/m3, the modulus of elasticity
was 2.5 GPa, and Poisson's ratio was 0.37. The strip was 597.6 mm long between pinned ends, 152.4 mm wide, and
0.508 mm thick. Therefore W ¼ 0:898 N=m and the nondimensional beam weight parameter was w¼44.2. Three base
lengths were used: 330.3 mm, 381.0 mm, and 431.8 mm (i.e., b¼ 0:553;0:638, and 0.723). Attached weights were combi-
nations of 7.12 g and 11.56 g (i.e., r¼0.130 and 0.211).

Fig. 1. Geometry of buckled beam with attached weight.

R.H. Plaut, L.N. Virgin / Journal of Sound and Vibration 379 (2016) 166–176 167



Download	English	Version:

https://daneshyari.com/en/article/6754325

Download	Persian	Version:

https://daneshyari.com/article/6754325

Daneshyari.com

https://daneshyari.com/en/article/6754325
https://daneshyari.com/article/6754325
https://daneshyari.com/

