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a b s t r a c t

Inherent material damping plays a very significant role on dynamic behaviour of rotors.
The material damping in a spinning rotor produces a tangential force along the whirl
direction and its magnitude being proportional to spin speed. After certain value of spin
speed, decided by the characteristic of the system, the tangential force becomes strong
enough to throw the rotor centre out of the whirl orbit by inflating it progressively. This
leads to destabilization of the system and corresponding speed is known as stability limit
of spin speed. Stability limit of spin speed for Jeffcott rotor, by using viscous form of
material damping model is straight forward and has been reported by several researchers,
however the same analysis for viscoelastic material characteristics is not reported much.
This analysis is very relevant for industrial requirements to replace bulky and heavy metal
rotor by light but strong rotors. This is achieved either by reinforcing fibre or multi
layering arrangements. Both of which are represented by viscoelastic constitutive beha-
viour. This paper gives mathematical derivation of equations of motion for multi-disc,
multi-layered rotor–shaft-system. Both lumped mass and discretized approach (finite
element) are presented here mathematically and numerical simulation results are com-
pared. The lumped mass approach gives a concise yet acceptable accuracy of the results.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction and research provocation

Rotating machines have various applications in our daily life; engines, generators, turbines, pumps, compressors, etc., are
some examples of the same; Refs. [1–3] may be referred to display many such uses and applications. So, for efficient, safe
and reliable functioning, vibration in rotating machinery must be as low as possible or should at best be contained within
acceptable limits. Damping in non-rotating structures reduces vibratory motion by dissipating vibratory energy. However
for rotors only stationary dissipative forces help to diminish vibration but rotating damping forces generated by material
damping present in the spinning rotor may not always reduce rotor vibration. Rotating damping forces above certain speed,
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the limit of which is decided by the characteristics of the system, may add energy to the whirl orbit and result in desta-
bilization of rotor–shaft systems. Despite this, for the need to have light yet strong and well damped rotor–shafts working
primarily at normal temperature surroundings, composite material made of fibre reinforced or layer-wise construction are
only alternatives. This paper attempts to obtain equations of motion of such a rotor–shaft-system by approximating rotor–
shaft continuum as lumped masses as well as by finite beam elements. The former gives a simple yet effective prediction of
the dynamic behaviour, whereas the latter is no doubt elegant but results in many equations of motion and is computa-
tionally intensive.

By and large every materials are understood to be viscoelastic, unlike elastic materials, strain produced in viscoelastic
materials, causes simultaneous energy storage and dissipation when subject to dynamic loading. Here, stress at a point is
not only proportional to strain but in general the stress and its derivatives are proportional to strain and their derivatives;
the Hookean behaviour of a material, where stress is proportional to strain forms a special case of viscoelastic material. This

Nomenclature

a;b coefficients of material modulus
e exponential
e eccentricity
i iota (imaginary unit)
l length of element
n number of coefficients in polynomial of mod-

ulus operator
q
� �

total degrees of freedom
u; v;w mechanical displacement along the x, y and z

axis respectively
r radius of rotor
uf g excitation force
t time in seconds
A cross-sectional area
A½ � system state matrix
B½ � input matrix
C½ � output matrix
C½ � matrix, content all stiffness coefficients
D½ � direct transmission matrix
D diameter
D first order differential time operator, i.e. dðÞ

dt
EðÞ modulus operator
E modulus of elasticity
E½ � descriptor matrix
F objective function
G½ � gyroscopic matrix
I area moment of inertia
I identity matrix
JP polar moment of inertia
JD diametral moment of inertia
K½ � stiffness matrix
L length of rotor
L� disc position
M½ � mass matrix
M mass
Nd number of disc
Nl number of layer
Pf g external nodal force vector
R deformation of the rotor centre line
V potential energy
Xf g state vector
y
� �

output vector
φ; ϑ rotation about y and z-axis respectively
ℜ radius ratio

σ mechanical stress
ε mechanical strain
ρ mass density
ω whirl speed
Ω spin speed
η loss coefficient

Subscript

cr critical
d disc
i iteration
i; j; k indices
l layer
n total number of degrees of freedom
r rotor
D diametral
P polar
x; y; z conventional coordinate axis
B bending
C circulatory

Superscript

e element
T transpose

Abbreviation

CM classical model
FNF first natural frequency
FEM finite element model
MDF modal damping factor
SLS stability limit of spin speed
SWL synchronous whirl line
UBR unbalance response

Operators

ðÞ operator
ðUÞ order of differential equation
ð � Þ vector is in rotating coordinate
ð�Þ non-dimensional term
(^) assumed quantity
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