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a b s t r a c t

We study flow-induced instabilities of axis-symmetric shells of revolution with an arbi-
trary meridian and non-zero Gaussian curvatures. We consider a fluid–structure inter-
action (FSI) model based on an inviscid flow model and a thin shell theory. This FSI model
is solved using a method that combines the Galerkin technique with the boundary ele-
ment method (BEM). The present method is capable of investigating the dynamic beha-
vior of doubly‐curved shells in contact with flow without the need for an analytical
solution of the perturbed flow potential. Shells of revolution with different values of non-
zero Gaussian curvatures are investigated and their behavior is compared to shells with
zero Gaussian curvature. It is found that the added mass natural frequencies of shells of
revolution are larger than those of conical shells with the same inlet, outlet and length.
Shells of revolution, with both positive and negative Gaussian curvatures, lose their
instability by buckling, however, shells with negative Gaussian curvatures buckle at
modes similar to those observed in uniform and conical shells, while shells with positive
Gaussian curvatures buckle with localized deformations close to the area with higher local
flow velocities.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of shell structures in contact with fluid flow have been studied extensively both experimentally and
theoretically because of the applications of such structures in engineering and biomechanics systems. The main focus of the
existing studies is on the problem of cylindrical shells with a uniform circular cross-section. These studies have been dis-
cussed comprehensively in recent books by Païdoussis and Amabili [1,2]. Recently, there has been an increasing interest in
understanding the dynamics of shells with non-uniform cross-sections conveying fluid, with a focus on conical shells.

Thin-walled conical shells have several important applications in submarines and offshore drilling rigs. Kurma and
Ganesan [3] used a finite element method (FEM) to study the dynamics of conical shells conveying fluid with various semi-
vertex angles. They found that there is a correlation between the shells' circumferential buckling mode and the cir-
cumferential mode with the lowest added mass frequency (the natural frequency of the shell filled with fluid). Kerboua et al.
[4] used a semi-analytical FEM to study this system. The displacement functions of the structure were derived from the
exact Sander's thin shell equation for conical shells, while the flow potential solutions were written in polynomial
expansions, based on Frobenius method. Bochkarev and Matveenko [5] studied the dynamic behavior of conical shells
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conveying fluid using the same inviscid fluid model as in [4] and with different boundary conditions for the perturbed flow
potential. They found that conical shells conveying fluid can undergo flutter or buckling instabilities, depending on the
shell's semi-vertex angle and boundary conditions. The aeroelasticity problem of conical shells subjected to supersonic flow
has also been investigated by several researchers [6–8]. Usually, the linear piston theory for supersonic flow is utilized in the
aeroelastic models.

Shells of revolution are extensively used in different systems, such as pressure vessels and rocket nozzles. The existing
studies on shells of revolution are mainly based on FEM [9,10] or generalized differential quadrature method [11,12]. While
there is a fair amount of literature on dynamics of shells with cylindrical or conical geometry conveying fluid, the studies on
shells of revolution with an arbitrary meridian conveying fluid are quite limited. Ventsel et al. [13] combined the Boundary
Element Method (BEM) and FEM to investigate the dynamics of shells of revolution filled with fluid. They studied the effect
of added mass of the fluid on the natural frequency of the shell of revolution and their vibration modes. Menaa and Lakis
[14] studied the supersonic flutter of a spherical shell with a hybrid FEM method and first-order piston theory. They found
that by increasing the radius to thickness ratio of a spherical shell, flutter occurs at a higher dynamic pressure.

In this paper, the flow-induced instabilities of shells of revolution with an arbitrary meridian conveying fluid are studied.
The main focus of this study is on doubly‐curved shells with non-zero Gaussian curvature. The present algorithm combines
Galerkin's method with BEM, which is used to determine the induced flow pressure on the shell's inner wall. Because no

Nomenclature

α0 semi-vertex cone angle of a conical shell
χ boundary conditions assigned in BEM
ϵx;0, ϵθ;0, γxθ;0 strain components in the mid-plane of

the shell
ϵxx, ϵθθ , γxθ strain components in an arbitrary position
λm eigenvalues of the axial mode shapes
ω, f dimensional and dimensionless natural

frequencies
ρ, ν, E density, Poisson's ratio and Young's modulus
ρf fluid's density
φ, φa, φbperturbed flow potentials
x0
!, x! position vectors used in BEM
a the generalized coordinates of the

mode shapes
Ax, Aθ Lamé parameters
kθ curvature along the circumferential coordinate
kx curvature along the axial coordinate x
l, h, A, a1, a2 length, thickness, cross-sectional area, and

the inlet and outlet radii of a shell
M, C, K shell's mass, damping and stiffness matrices

m, n axial and circumferential wavenumbers of the
mode shapes

Mf, Cf, Kf mass, damping and stiffness matrices due to
the flow force

Mx, Mθ, Mxθ resultant moments
Nx, Nθ, Nxθ resultant forces
Ox center of curvature along the axial coordinate
P perturbed pressure
q the generalized coordinates
Q, Q dimensional and dimensionless flux
R0θ, asor parameters defining the geometries of shells

of revolution
Rθ radius of curvature along the circumferential

coordinate
Rx radius of curvature along the axial coordinate
s curvilinear coordinate along the shell's

meridian
S0, S1 shell's inlet, outlet and shell's sidewall
U flow velocity
u, v, w axial, circumferential and radial displacements
x, r, θ shell's cylindrical coordinates
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Fig. 1. Schematic of a shell of revolution.
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