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a b s t r a c t

This paper concerns the frequency response analysis of beams and plane frames with an
arbitrary number of Kelvin–Voigt viscoelastic dampers. Typical external and internal
dampers are considered, as grounded translational, tuned mass, rotational and axial
dampers, for bending and axial vibrations, respectively. Using the theory of generalised
functions within a 1D formulation of equations of motion, exact closed-form expressions
are derived for beam dynamic Green’s functions and frequency response functions under
arbitrary polynomial load, for any number of dampers. For a plane frame, exact global
frequency response matrix and load vector are built, with size depending only on the
number of beam-to-column nodes, for any number of dampers and point/polynomial
loads along the frame members. From the nodal displacement solution, the exact fre-
quency response in all frame members is also obtained in closed analytical form.
Numerical applications show many of the advantages of the proposed method.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dampers are very important to control bending and axial vibrations in beams and frame structures [1–3]. Examples are
grounded translational dampers (TDs), tuned mass dampers (TMDs), rotational dampers (RDs) and axial dampers (ADs). A
typical constitutive model includes linear elasticity and viscous damping, corresponding to a Kelvin–Voigt (KV) model of
viscoelasticity [4–11], consistent with Federal Emergency Management Agency (FEMA) code of practise [12]. Also in bolted
or welded joints, where flexibility and damping arise due to imperfections or damage, KV RDs [13,14] or ADs [15] are
often used.
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Within a standard 1D formulation of the vibration problem, several studies have addressed the frequency response of
beams with dampers. Frequency response analysis is of great interest as it provides the steady-state response to harmo-
nically varying excitations, as those caused, for instance, by reciprocating or rotating machine parts including motors, fans or
compressors. Frequency response data are used for control design, finite element (FE) model updating, system identification
or damage detection (e.g., see Ref. [16–18] and the cross references therein). In the context of frequency response analysis,
particular attention has been focused on the computation of the dynamic Green’s functions (DGFs), which provide the
displacement/rotation and stress-resultant responses to a harmonically varying unit point load at an arbitrary position on
the beam, based on which the frequency response functions (FRFs) under harmonic distributed loads can be derived by
spatial integration over the beam axis. In principle, the DGFs can be built by a classical approach where the steady-state
response over every uniform beam segment between two consecutive dampers/point load locations is expressed in a typical
trigonometric form with a number of unknown integration constants (4 for the bending problem and 2 for the axial pro-
blem), computed by enforcing the B.C. and a set of matching conditions between the responses over adjacent beam seg-
ments, at the locations of the dampers and harmonic point load. However, when using this approach the coefficient matrix
associated with the equations to be solved has to be re-inverted for any forcing frequency of interest. Of course, it has to be
updated whenever the dampers/point load locations change along the axis, and the size of the matrix will inevitably
increase with the number of dampers, as expected. Therefore, as beams carrying multiple TDs, TMDs, RDs, ADs are
encountered in many engineering applications [4–15], alternative methods to compute the DGFs and FRFs, which may
overcome the inherent limitations of the classical approach, have been actively sought in several studies, for both bending
and axial vibrations.

As for bending vibrations, the exact DGFs of Euler–Bernoulli (EB) and Timoshenko (TM) beams with KV TDs have been
derived by Sorrentino et al. [19–21]. Following a transfer matrix approach in conjunction with an appropriate state-variable
representation, the authors obtained the characteristic equation of the free vibration problem as a determinant of a 4�4
matrix regardless of the number of TDs, and, upon demonstrating orthogonality conditions for the eigenfunctions, they
derived exact DGFs by the complex modal superposition method [19,21]. They also built a corresponding exact solution by
direct integration method [20]. Exact DGFs by the complex modal superposition method have been obtained for TM beams
with KV TDs and RDs by Hong and Kim [22], using the dynamic stiffness matrix (DSM) approach in conjunction with a
Laplace transformation of the beam governing equations. In this case, clearly the DGFs are obtained by a matrix whose size
increases with the number of dampers. For an EB simply-supported beam carrying a TMD subjected to a harmonic exci-
tation, Tang et al. [23] derived exact DGFs using the recurrence method. Several other authors have shown that approximate,
but accurate DGFs of beams with dampers can be derived by a modal representation using the eigenfunctions of the bare
beam, i.e. the beam without dampers. Examples may be found in the studies of Wu and Chen [24] for an EB beam with an
arbitrary number of TMDs, Gürgöze and Erol [25] for an EB beam with an intermediate viscous TD, an intermediate fixed
support and a tip mass. Gürgöze and Erol [26] later applied the method in Ref. [25] to derive the DGFs of a cantilever with an
end viscous damper and subjected to external distributed damping. Some further studies have been conducted not only to
obtain approximate DGFs, but also to ascertain approximate FRFs under distributed loads. For an EB beam with an arbitrary
number of TDs and RDs, Failla [27] built approximate FRFs under arbitrary distributed loads, as superposition of modal FRFs.
The modal FRFs have been derived based on appropriate orthogonality conditions for the complex eigenfunctions of the
beam with dampers, using the theory of generalised functions to treat the discontinuities of the response variables at the
dampers locations. The study in Ref. [27] generalises an approach originally devised by Oliveto et al. [28] for EB beams with
end viscous RDs.

In the context of frequency analysis of bending vibrations, it is worth noting that DGFs and FRFs have been sought for EB
or TM beams including elastic supports, attached masses or spring-mass systems, but without damping. In particular, exact
DGFs have been obtained by the classical approach [29,30] or by using the DGFs of the bare beam in conjunction with
appropriate conditions at locations of supports/masses [31–33]. In all these cases, the number of equations to be solved
increases with the number of supports/attachments [29–33]. Other exact DGFs have been proposed for EB beams including
an arbitrary number of rotational joints modelling cracks [34] by inverting a 8�8 DSM built by a transfer matrix method.
Finally, approximate DGFs have been built as modal superposition of eigenfunctions of the bare beam, for an EB model
including a fixed support [35].

As for axial vibrations, the DGFs for a beam with an end viscous damper have been derived in a closed form by Hull [36].
Approximate DGFs and FRFs have been derived by Alati et al. [37] for a beam with an arbitrary number of either TDs/TMDs
or ADs, as superposition of modal DGFs or FRFs built upon solving the complex eigenvalue problem and utilising ortho-
gonality of the eigenfunctions. This approach mirrors the one proposed by Failla [27] for the bending problem.

Exact and efficient solutions for frequency response analysis are of great interest not only for single beams but also for
frames, as many applications involve frames carrying multiple TMDs, RDs and ADs [4–11,13,14]. The frequency response
matrix (FRM) of frames with TMDs has been constructed by Guo and Chen [38] using the reverberation matrix approach in
conjunction with generalised matrix inversion. The global DSM, from which the FRM can be derived by matrix inversion
[16–18], has been obtained in Ref. [11,13,14] for frames with KV RDs at beam-to-column nodes modelling dissipating beam-
to-column connections [11] or bolted/welded joints with imperfections or damage [13,14], and by Caddemi and Caliò [39,40]
for frames with elastic rotational joints arbitrarily located along the frame members, using the theory of generalised
functions. A recent approach has been devised by Caddemi et al. [41], where a TM beam element with an arbitrary number
of deflection and rotation singularities is formulated based on the static shape functions, and corresponding stiffness and
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