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a b s t r a c t

In a recent work [L.I. Manevitch, A.F.Vakakis, Nonlinear oscillatory acoustic vacuum, SIAM
Journal of Applied Mathematics 74(6) (2014), 1742–1762] it was shown that a periodic chain
of linearly coupled particles performing low-energy in-plane transverse oscillations
behaves as a strongly nonlinear sonic vacuum (with corresponding speed of sound equal
to zero). In this work we consider the grounded version of this system by coupling each
particle to the ground through lateral springs in order to study the effect of the grounding
stiffness on the strongly nonlinear dynamics. In that context we consider the simplest
possible such system consisting of two coupled particles and present analytical and
numerical studies of the non-stationary planar dynamics. The most significant limiting
case corresponding to predominant low energy transversal excitations is considered by
taking into account leading order geometric nonlinearities. Then we show that the
grounded system behaves as a nonlinear sonic vacuum due to the purely cubic stiffness
nonlinearities in the governing equations of motion and the complete absence of any
linear stiffness terms. Under certain assumptions the nonlinear normal modes (i.e., the
time-periodic nonlinear oscillations) in the configuration space of this system coincide
with those of the corresponding linear one, so they obey the same orthogonality relations.
Moreover, we analytically find that there are two transitions in the dynamics of this
system, with the parameter governing these transitions being the relation between the
lateral (grounding) and the interchain stiffnesses. The first transition concerns a bifurca-
tion of one of the nonlinear normal modes (NNMs), whereas the second provides
conditions for intense energy transfers and mixing between the NNMs. The drastic effects
of these bifurcations on the non-stationary resonant dynamics are discussed. Specifically,
the second transition relates to strongly non-stationary dynamics, and signifies the
transition from intense energy exchanges between different particles of the system to
energy localization on one of the particles. Both of these regimes, as well as transitions
between them are adequately described in the frameworks of the new concept of Limiting
Phase Trajectories (LPTs) corresponding to maximum possible energy exchanges between
the oscillators. Hence, a further example is provided by a particle chain where geometric
nonlinearities lead to the realization of a sonic vacuum.
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1. Introduction

It was shown recently [1] that in the limit of low energy a fixed–fixed chain of linearly coupled particles performing in-plane
transverse oscillations possesses strongly nonlinear dynamics and acoustics due to geometric nonlinearity, forming a nonlinear
acoustic vacuum. This designation denotes the fact that the speed of sound as defined in the sense of classical acoustic theory is
zero in that medium, so the resulting equations of motion lack any linear stiffness components. An unexpected feature of that
system was the presence of strongly non-local terms in the governing equations of motion (in the sense that each equation
directly involves all particle displacements), in-spite of the fact that the physical spring-mass chain has only local (next-neighbor)
interactions between particles. These non-local terms constitute a time-dependent ‘effective speed of sound’ for this medium,
which is completely tunable with energy. A rich structure of resonance manifolds of varying dimensions were identified in the
nonlinear sonic vacuum, and 1:1 resonance interactions are studied asymptotically to prove the possibility of strong energy
exchanges between nonlinear modes.

The concept of nonlinear sonic vacuum is not new, since ordered arrays of spherical elastic granular particles (beads)
have been known to exhibit such strongly nonlinear dynamical behavior [2–4]. When no pre-compression exists in this type
of ordered granular media so that separations between beads are possible, their nonlinear acoustics are essentially
nonlinear, since they lack any linear component, and the corresponding speed of sound is equal to zero – hence, their
characterization as ‘sonic vacua’ by Nesterenko [2]. The feature of sonic vacuum is exclusively related to the Hertzian law
during bead–bead interactions, and the basic difference with the systems considered in [1] is that the essential nonlinearity
required for realizing the sonic vacuum is smooth and is generated by geometrically nonlinear streatching effects and not by
Hertzian interactions or collisions between particles.

Returning to the sonic vauum studied in [1], one of its distinctive features was that its nonlinear normal modes – NNMs
[5] could be exactly determined; by NNMs we denote here the time-periodic free oscillations of an undamped dynamical
system with straight trajectories in the configuration space. Moreover, the analysis has shown that the number of NNMs in
the sonic vacuumwas equal to the dimensionality of the configuration space and that no NNM bifurcations were possible. In
addition, the most intensive 1:1 resonance intermodal interaction was the one realized by the two NNMs with the highest
wavenumbers. Hovewer, the unstretched string model considered in [1] is in some sense a special case, since one of the
most significant features of dynamical systems with homogeneous potentials is that the number of NNMs may exceed the
number of degrees of freedom due to mode bifurcations [6]. One can expect that such NNM bifurcations will also lead to
drastic modification of the non-stationary resonance dynamics of the sonic vacuum, e.g., described by limiting phase
trajectories – LPTs [7,8]. LPTs correspond to regimes of most intense energy exchanges between different parts of a
dynamical system, and their role in the theory of non-stationary resonant dynamics is similar to the role of NNMs in
stationary resonant dynamics. It follows that it is of interest to consider an extension of the nonlinear sonic vacuum
developed in [1] so that the modified system has the capacity to undergo NNM bifurcations. Such a study will provide us
with the opportunity to investigate how these bifurcations can affect the non-stationary resonant dynamics and
corresponding resonant energy exchanges that are realized.

Accordingly, in this work we present an extension of the nonlinear sonic vacuum by considering a structural modification
of the particle chain considered in [1] through the addition of a pair of grounding lateral stiffnesses to each particle. Due to
geometric nonlinearity generated by the in-plane oscillations of the particles the grounding stiffnesses introduce essentially
nonlinear (i.e., nonlinearizable) stiffness terms in the equations of motion of the sonic vacuum and give rise to NNM
bifurcations (in contrast to the ungrounded sonic vacuumwhere no NNM bifurcations are possible). Hence, viewed in another
context, the system considered in this work can be regarded as the simplest discrete essentially nonlinear membrane. Due to
the complexity of the problem we present analytical and numerical studies of the non-stationary planar dynamics of the
model of only two particles under conditions of 1:1 resonance, and analyze the drastic effects of NNM and LPT bifurcations on
the non-stationary resonant dynamics of this system.

2. Nonlinear sonic vacuum

We consider the nonlinear chain depicted in Fig. 1. It consists of n particles of identical mass m connected by linear
interchain springs of elastic constant k1; moreover, each particle is connected to the ground by two linear lateral springs of
elastic constant k2. It is assumed that all particles perform in-plane oscillations in the vertical plane ðOxyÞ, and that all springs
are unstretched at the system equilibrium corresponding to the line y¼ z¼ 0 (see Fig. 1). In addition, fixed–fixed boundary
conditions are assumed for the particle chain, the unstretched length of the ith interchain spring connecting particles i�1 and
i is being taken equal to li, for i¼ 1;2;…;n, and the unstretched lengths of the lateral springs are assumed to be equal to d.
Considering the free in-plane oscillations of this system, the transverse and axial deformations of particle i are denoted by vi
and ui, respectively, and the deformed length of the ith interchain spring by li' and of the ith lateral springs by di' (both lateral
springs have equal stretched lengths due to symmetry). Without loss of generality gravity forces are disregarded, and it is
assumed that no dissipation forces exist. Finally, without loss of generality the normalization Σnþ1

i ¼ 1li ¼ 1 is imposed for the
interchain springs. Then the analysis follows the approach developed in [1] for the corresponding system with no lateral
grounding supports.
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