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a b s t r a c t

The magnitudes of the resonant peaks should be considered in the design stage of any
bandwidth-relevant applications to widen the working bandwidth. This paper presents a
new design method for a planar vibration system that satisfies any desired ratio of peak
magnitudes at target resonant frequencies. An important geometric property of a modal
triangle formed from three vibration centers representing vibration modes is found.
Utilizing the property, the analytical expressions for the vibration energy generated by
external forces are derived in terms of the geometrical data of vibration centers. When any
desired ratio of peak magnitudes is specified, the locations of the vibration centers are
found from their analytical relations. The corresponding stiffness matrix can be deter-
mined and realized accordingly. The systematic design methods for direct- and base-
excitation systems are developed, and one numerical example is presented to illustrate
the proposed design method.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The magnitude of the resonant peak is an important factor which should be considered in the design stage of a vibration
system. The importance of this factor becomes especially apparent for applications that are relevant to the bandwidth, such
as vibration-based energy harvesters or vibration absorbers. For example, although the natural frequencies of multimodal
energy harvesters are designed to be close to one another, a wide bandwidth cannot be guaranteed if the peak magnitudes
are not uniform.

While the peak magnitude of a 1-degree of freedom (dof) system can be adjusted easily by tuning the parameters, it is
not easy to tune the peak magnitudes of multimodal systems. This is because the complexity increases as the magnitude of
the resonant peak of a multimodal system depends on both the resonant frequency and the vibration mode. Furthermore,
the vibration modes are constrained by the orthogonality property with respect to the inertia matrix in general, which
increases the complexity.

To tune the peak magnitudes of multimodal systems, optimization methods are widely used. However, these numerical
methods lack the clear physical meaning of the system parameters, and often fail to give proper solutions. Many studies on
the peak magnitudes for multimodal systems have been made to overcome such problems, especially in the field of energy
harvesters. One approach is to use a multiple mass array [1–4]. Because the total system consists of independent 1-dof
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systems, the magnitudes of the peaks can be adjusted independently with that method. A bulky system is needed to obtain
a wide bandwidth from independent multiple peaks without using the coupling effect. Tang and Yang analyzed the peak
magnitudes of a multimodal energy harvesting system that consisted of serially stacked 1-dof systems [5]. In that research,
the coupling effect between the primary and stacked bodies was explained analytically. Since a rigid body has 6-dofs (3-dofs
for the planar case) in space, it is desirable to use as many dofs as possible for greater efficiency. For that purpose, Jang et al.
derived an analytical expression of the magnitudes of resonant peaks by utilizing the impedance method for a simple 2-dof
model which consisted of a single mass and two parallel supporting beams [6]. Doğan proposed a serial type energy
harvester which is a two-link flexible arm with non-uniform cross-section [7]. He showed that the combination of the
concepts of nonlinearity from variable beam geometry [8] and multi-degrees of freedom is efficient in broadening
bandwidth.

Though there has been much research in this area, a design method for a more general system is still required. The
simplest case would be one in which all the modes are decoupled. In such a case, the magnitudes of modes may be adjusted
independently. However, if a pure force is applied to the body of such a decoupled system, pure rotational modes cannot be
excited. On the contrary, a pure moment cannot excite pure translational modes. Therefore, to make a system have the
desired resonant frequencies and magnitudes of resonant peaks for general excitation, the coupling relationship between
vibration modes should be considered together. Blanchet first introduced the geometrical relationship between vibration
modes via screw theory [9]. He showed that the triangle formed by three planar vibration modes has its orthocenter at the
mass center of the system. Dan and Choi derived the analytical expression of vibration mode for the system that has planes
of symmetry [10]. They also designed an optical pickup device using the root locus representing the variation modes for a
spatial system with one plane-of-symmetry [11]. Recently, the geometric properties of the modal triangle such as the area
and shape were further investigated by Jang et al. [12].

This paper presents a new design method for a planar vibration system with given mass properties (mass and moment of
inertia) that can be used to determine the desired ratio of vibration energies at specified resonant frequencies. It is described in
the next section that three vibration modes represent the centers of vibration, which form a triangle with orthocenter at the
mass center. The triangle is referred to hereinafter as a modal triangle. The proposition of a modal triangle, which states that it
becomes an acute triangle, is given. In Section 3, the proposition is used to derive the analytical expressions for vibration energy
induced by an external force in terms of the geometrical data of the vibration modes. The systematic design methods for both
direct- and base-excitation systems are described. The final section illustrates one numerical design example.

2. Theoretical preliminaries on modal triangle

When a rigid body is elastically suspended in a plane, the equation of motion for undamped free vibration at any
coordinate frame A is given by

M €XþKX¼ 0; (1)

whereM; K A R3�3 are the inertia and stiffness matrices, respectively. The general form of the displacement vector X can be
expressed by

X¼ X̂ejωt ; (2)

where ω denotes the natural frequency of the system and X̂ is time-independent.
In Eq. (2), X̂ can be given by

X̂¼ δxo δyo δφ
h iT

; (3)

where δxo and δyo represent the x- and y-components of small translational displacement of a point on the rigid body
coincident with the origin, δφ is the angle of small rotational displacement as shown in Fig. 1. By dividing X̂ by δφ, the
normalized vector representing the line parallel to the z-axis and passing through the instantaneous center of motion can be
expressed by [13]

Ŝ¼ y �x 1
� �T

; (4)

where x and y are the coordinates of instantaneous center of motion. The planar vibration motion can also be expressed by
such representation, and three normal modes of vibration that are solutions of Eq. (1) can be expressed by

Ŝi ¼ yi �xi 1
h iT

; ði¼ 1;2;3Þ; (5)

where xi; yi
� �

are the coordinates of the vibration center of the ith normal mode. Normal modes of vibration are orthogonal
to each other with respect to the inertia and stiffness matrices, and it can be written as

STMS¼
~m1 0 0
0 ~m2 0
0 0 ~m3

2
64

3
75 and STKS¼

~k1 0 0
0 ~k2 0
0 0 ~k3

2
64

3
75; (6)
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