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a b s t r a c t

This study extends dynamic understanding of a taut cable with a viscous damper at
arbitrary location to that with a general linear viscoelastic (VE) damper portrayed by a
five-parameter fractional derivative model (FDM). The FDM is able to describe a general-
ized relationship between force and deformation of viscoelastic dampers (material) in a
wide frequency range, which can simulate a practical damper including its support
condition or a secondary tie between neighboring cables. Free vibrations of the passively
controlled cable system have then been formulated analytically through complex modal
analysis. For the restricted case that the FDM is installed close to one cable anchorage,
asymptotic solutions for the system complex frequency and modal damping are pre-
sented; explicit formulas have also been derived to determine the maximal attainable
damping and corresponding optimum FDM parameters, based on which effects of
frequency-dependent damper properties are appreciated. Considering the FDM located
at arbitrary location, the three distinct regimes of frequency evolutions observed for a
cable with a viscous damper have been generalized to that with a VE damper; also, new
characteristics of the regime diagram and the frequency evolution in each regime are
observed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Attaching mechanical dampers, especially of linear viscoelastic (VE) type, on stay cables in cable-stayed bridges has
become a regular design for cable vibration mitigation due to its proven effectiveness, robustness and simpleness [1–3].
Meanwhile, understanding of the passively controlled cable system has gradually advanced in the past decades via adopting
more and more detailed models in dynamic analyses: cable model has evolved from a taut string to a tensioned beam with
static deformation; varied mechanical models consisting of elastic springs and dashpots have also been used to describe
properties of the damper and its support condition, as illustrated in Fig. 1, where c; c0;…; cq are coefficients of the dashpots;
k is the constant of the spring in parallel with the dashpots; b; b1;…; bq are relaxation time constants of springs in series
with the dashpots; α and β are fractional derivative orders in the fractional derivative model (FDM).

According to the parameters included, previous studies on the cable/linear damper system can be summarized into
categories listed in Table 1. For practical damper design, initial researches were dedicated to the dynamics of a taut string
with a viscous damper near its anchorage, e.g. [4–10]. Further, more parameters pertaining to the cable, such as the
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inclination, sag [11–17] and bending stiffness [18–21], were taken into account. Recently, more sophisticated models to
emulate the real damping material as well as the damper support have been adopted: damper intrinsic stiffness was
considered by a Kevin–Voigt model [22–25]; the support flexibility was addressed using a Maxwell model [25–28]; and they
were treated together through a three-element standard mechanical model (SMM) [29] (generalized Maxwell model). A
two-parameter fractional viscous damper was briefly considered in [22] to generalize the asymptotic format for the modal
damping appreciation of a transverse damper close to the end of a cable.

The aforementioned literature focuses mainly on the restricted case that the damper location is in the vicinity of cable
anchorage for traditional engineering demand. One issue that has not been fully considered thereof is the frequency
dependence of damper properties, namely the rate-dependent relaxation time constant and apparent damping coefficient,
which are of considerable significance because multiple cable modes are usually targeted [16,32] in practical damper design.
To describe the broadband rheological behavior of a VE damper, even the three-parameter Maxwell model is inadequate,
and more complicated models are required such as SMM and FDM with more elements. Actually, since the introduction of
the notion of FDM for a generalized relationship between stress and strain of viscoelastic material [33,34], this model has
been predominantly used. For instance, a four-parameter FDM was used to fit the viscoelastic properties of a damper
consisting of a piston moving in a highly viscous gel in [35–37]. Predictions by the obtained model were in excellent
agreement with experimental results over a wide frequency range. Applications of FDM to solid VE dampers can also be
found [38]. A review on the performance of different mathematical modeling of VE dampers [39] has demonstrated that
fewer variables are required for a FDM than a SMM to fit the experimental data while the modeling errors are of comparable
level. Besides, characteristics of a cable/linear damper system are mostly discussed in frequency domain, the complicated

Nomenclature

A;B;C;D quantities in expressions of the normalized
storage and loss stiffness of a FDM

b; b1;…; bq relaxation time constant in damper models
c; c0; c1;…; cq damping coefficient of dashpots in dam-

per models
cðωÞ apparent damping coefficient of a FDM
~copt0 optimum damper coefficient
D½ � fractional derivative operator
f ðtÞ; f̂ ðωÞ time function and its Fourier transformation
F ½ � Fourier transform operator
G1ðωÞ storage stiffness of a FDM
G2ðωÞ loss stiffness of a FDM
G1i normalized storage stiffness of a FDM
G2i normalized loss stiffness of a FDM
i cable mode number
i the imaginary unit

ffiffiffiffiffiffiffiffi
�1

p

j cable segment index
k spring constant in damper models
~k; ~c0; ~b dimensionless k; c0 and b normalized to cable

fundamental frequency
l; lj cable/segment length
m cable mass per unit length
n node number of cable mode shape
PðtÞ; P̂ðωÞ damping force and its Fourier transformation
Rj;Qj quantities in the characteristic equation
t time
T cable tension

uðtÞ; ûðωÞ damper deformation and its Fourier
transformation

x; xj coordinate along chord of the cable and each
segment

yjðxjÞ lateral deflection of segment j
YjðxjÞ complex mode shape of segment j
α; β fractional derivative order in a FDM
Γð Þ gamma function
ζi damping ratio of cable mode i
ζi;opt optimum damping ratio
θi phase angle of eigenfrequency ~λ i
λ dimensional cable eigenfrequency
~λ i dimensionless complex eigenfrequency
μj dimensionless length of cable segment j
σi real part of eigenvalue ~λ i
τ variable in the definition of fractional

derivative
φi damped frequency, also the imaginary part of

~λ i
φðjÞ
ci ith clamped frequency of segment j

φoi undamped frequency of mode i
φðjÞ
crit;i damped frequency of segment j in mode i

corresponding to critical damping
ωi modulus of dimensionless eigenfrequency ~λ i
ω01 cable fundamental natural frequency
Ωi asymptotic cable eigenfrequency of mode i
Ωi;0 cable eigenfrequency of mode i without

damper

Fig. 1. Viscoelastic damper (material) models: (a) viscous; (b) Kelvin–Voigt; (c) Maxwell; (d) SMM; (e) FDM.
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