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A B S T R A C T

In the field of wind engineering, the field measurement on wind pressure is a vital means of wind resistance
researches. However, for the field measurement there are some challenges below. The sensors miss partial data
due to their failure or service life. Likewise, some locations are difficult to deploy the required sensors. In this
paper, a hybrid prediction model of improved empirical wavelet transform (IEWT), particle swarm optimization
(PSO) and least squares support vector machines (LSSVM), is developed for purposes of data recovery and spatial
extension of non-Gaussian non-stationary wind pressure (complex signal). In this model, IEWT is first proposed to
decompose the signals and get rid of their noise components. Meanwhile, LSSVM is utilized to establish fore-
casting models of the trend component and main components, where their parameters are optimized by PSO
algorithm. Then, the single-point and spatial forecastings are carried out to verify the effectiveness of the pro-
posed model. Furthermore, the empirical mode decomposition (EMD), ensemble EMD (EEMD), and empirical
wavelet transform (EWT), are exploited to corroborate the advanced de-noising performance of IEWT. The final
results indicate that IEWT can effectively reduce the noise interference and enhance the forecasting precision of
complex signal.

1. Introduction

Currently, the obtainment of wind pressure mainly relies on the
following three methods: field measurement, wind tunnel test, and nu-
merical simulation (Dai, 2010). Since in the wind tunnel test and nu-
merical simulation, the determination of the geometric scale ratio and
the simulation of wind environment around buildings are very difficult,
the field measurement study is very important. Levitan and Mehta
(Levitana andMehtab, 1992) conducted Texas Tech field experiments for
wind loads. They provided the direct and valuable data and results for the
study of wind load characteristics of low-rise buildings. Pitsis and
Appedey (Pitsis and Apperley, 1991) carried out wind pressure mea-
surements on the cantilevered roof of Belmore stadium in Sydney. Li et al.
(Li et al.,; Hu et al., 2012) measured the surface wind pressure of a
movable house in Guangdong and compared the wind tunnel test data
with the low house of the same type, then obtaining the distribution of
wind pressure in the roof of different wind fields. Due to missing sensor
data and the layout of fewer measurement points, the prediction of wind
pressure is the important issue in wind engineering. However, the wind
pressure typically shows the strong non-Gaussianity (Huang et al.,
2017a). The prediction of the wind pressure could be more difficult

under the non-stationary winds, such as downbursts (Peng et al., 2018).
Fortunately, with the rapid development of artificial intelligence

technologies during the past several years, some forecasting models have
been successfully developed for non-stationary time series. Liu et al.
(2018a) constructed a reliable hybrid forecasting framework based on
deep learning strategy using the empirical wavelet transform (EWT), long
short term memory (LSTM) neural network and Elman neural network
(ENN), which had a satisfactory performance in the high-precision wind
speed prediction. Jiang et al. (2018) illustrated the application of the
correlation-aided discrete wavelet transform (DWT), least squares sup-
port vector machines (LSSVM), and generalized autoregressive condi-
tionally heteroscedastic (GARCH) to improve the accuracy on the wind
speed prediction. Daniel et al. (Ambach and Schmid, 2017) carried out a
comprehensive prediction of wind speed, wind direction, and air pres-
sure. The final results validated that the wind direction and the air
pressure are important to extend the forecasting accuracy of wind speed
forecasting. Huang et al. (2017b) applied the back propagation neural
network (BPNN) and proper orthogonal decomposition (POD) to forecast
the wind loads on high-rise buildings; Ji et al. (2018) used
covariance-based POD to interpolate the roof wind pressure for the points
where the pressure tap was not installed. Their results were found to be in
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good agreement with the wind tunnel test data. Therefore, an advanced
signal prediction technology may possess great performance to achieve
the recovery of missing sensor data and spatial expansion of obtained
sensor data.

Additionally, it should be emphasized that the actual data for wind
pressure forecasting inevitably contains the noise components, which
will affect the forecasting accuracy of the machine learning methods (Yu
et al., 2018; Niu et al., 2018). Some researches show that noise removal
can improve prediction accuracy (Jiang et al., 2018; Jiang and Huang,
2017). Therefore, noise-elimination may be a good attempt in prediction.
In recent years, many de-noised methods have been developed and
showcased a good performance in nonlinear and non-stationary signal

de-noising (Abdoos, 2016), which can be divided into two categories.
One is the frequency domain signal processing technique, such as fast
Fourier transform (FFT), wavelet transform (WT), wavelet packet trans-
form (WPT). The other is the time domain signal analysis means, such as
the empirical mode decomposition (EMD), ensemble EMD (EEMD), and
multivariate EMD (MEMD) (Huang et al., 2017c). Among them, the
frequency domain WT has been used in many fields because of its con-
venience and generality (Peng et al., 2018; Silsirivanich, 2017; Wang
et al., 2018a). However, its performance depends highly on the selection
of mother wavelets and optimal numbers of decomposition levels (Zheng
et al., 2017). In order to address these problems, some improved WT
methods, such as fast WT (FWT) and WPT, have been developed. How-
ever, these methods have the problem of over-decomposition (Okumus
and Dinler, 2016; Liu et al., 2018b; Cao et al., 2009). On the other hand,
the time domain EMD can well process non-linear and non-stationary
signal by adaptively decomposing the signal into several intrinsic mode
functions (IMFs) (Li et al., 2018). However, the existence of mode mixing
and the disturbance of end effect will reduce its performance (Du et al.,
2017). On the basis of EMD, Wu et al. (Wu and Huang, 2009) proposed
the EEMD method to solve the mode mixing problem in a certain extent
through adding white noise to the signal (Jiang and Huang, 2017), which
makes the decomposition more robust. However, it is very difficult to
determine the number of realizations and noise standard deviation in the

Fig. 1. Segmentation of Fourier spectrum.

Fig. 2. Illustration of detected boundaries on Fourier spectrum based on EWT and IEWT. ((a) Boundary Division by IEWT and (b) Comparison of boundary division by
EWT and IEWT).

Fig. 3. Comparison of Time-frequency representation. ((a) Time-frequency representation based on EMD and (b) Time-frequency representation based on IEWT).
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