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A B S T R A C T

Shape optimization serves as a powerful tool to reduce wind effects on buildings. Past studies have demonstrated
the superiority of the shape tailoring technique in aerodynamic mitigation through recessing or chamfering
building corners, etc. Nonetheless, conventional approaches highly rely on wind tunnel experiments for which
only a limited number of candidate geometries are tested to identify the best-performing one. In an attempt to
globally and automatically explore the optimal geometry, the shape optimization via surrogate modeling is
introduced in this study. Particularly, CFD is employed for calibration of the surrogate model. The CFD analyses
can be conducted either through low-fidelity simulations such as RANS model, or through high-fidelity ones
including LES. The low-fidelity model can provide a large ensemble for surrogate calibration, yet it suffers from
the lack of accuracy. On the other hand, the high-fidelity model exhibits satisfactory accuracy, while it can only
accommodate a small ensemble which may result in a large sampling error in the surrogate calibration. In order to
take advantages of the merits of two types of CFD models, a multi-fidelity surrogate modeling is investigated in
this research to guarantee the model accuracy as well as to maintain the computational efficiency.

1. Introduction

Shape optimization plays a crucial role in the design of tall buildings
from the aerodynamic mitigation standpoint. A creative tailoring of the
external geometry can benefit in the reduction of dynamic wind loads on
the building, leading to many economic advantages (Kareem et al., 2013;
Bernardini et al., 2015). To this end, an automatic search for identifying
the optimal external geometry of the building through advanced
computing would represent an effective approach for replacing the
methods based on time-consuming and costly wind tunnel tests.
Furthermore, an approach of this type would enable a far more
comprehensive exploration of the design space that is rigorously guided
by the optimization algorithms, potentially resulting in more innovative
and efficient solutions as compared to conventional ones (Bernardini
et al., 2015).

In an attempt to develop an automated strategy for shape optimiza-
tion as mentioned above, flow simulation is carried out through
computational fluid dynamics (CFD) to assess the aerodynamic response
of the system, which is then coupled with optimization algorithms in
order to enable the search for the optimal geometry of the building.
Despite the promise of the proposed methodology, a significant number

of computational resources are necessary due to the computationally
intensive CFD simulations required at each iteration of the optimization
process. In order to overcome this significant computational hurdle, a
surrogate-based modeling approach is introduced, providing a compu-
tationally inexpensive approximation of the original problem built from a
limited set of runs of the original model, referred to as the design of
experiments (Forrester and Keane, 2008). Therefore, the accuracy of
aerodynamic measures obtained from CFD analyses in each run is
directly associated with the fidelity of the surrogate model, as is the
subsequent optimal solution.

Observations from limited runs of the original model may involve
data sources of multiple fidelities with different computational costs
(Zaytsev and Burnaev, 2017). With regard to the numerical simulation of
the wind flow around bluff bodies, e.g., civil structures, at high Reynolds
numbers, the CFD analyses can be either carried out through low-fidelity
simulations, such as Reynolds-averaged Navier-Stokes (RANS), or
high-fidelity simulations such as Large Eddy Simulation (LES). With the
low-fidelity model it is necessary to generate large numbers of samples
for calibration. However, these simulations can result in noticeable
modeling errors because the unsteadiness of the turbulence is averaged
out in Reynolds-averaged approaches (Ferziger and Peric, 2012), which
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causes difficulties in modeling complex phenomena such as the vortex
shedding. In this respect, the high-fidelity model helps refine the accu-
racy of the low-fidelity model as it only requires the modeling of
small-scale turbulence. Because of the huge computational effort asso-
ciated with the high-fidelity model, only a small ensemble can be
generated, leading to large sampling errors. Therefore, it's necessary to
blend the information sources frommultiple fidelities of CFD analyses for
calibrating surrogate models.

In an effort to construct sophisticated surrogates based on regression
against multiple sets of data, modern statistical learning techniques such
as Gaussian process regression provide reliable tools in capturing
intrinsic features of the output of complex engineering systems (Perdi-
karis et al., 2015). Multi-fidelity surrogate modeling has been success-
fully applied to a host of engineering problems including the beam design
using finite element analyses with variable mesh sizes (Leary et al.,
2003), optimization of a transonic aircraft wing with two levels of CFD
fidelity (Forrester et al., 2007), rotor bade design based on the code with
simplified aerodynamics as well as high-fidelity numerical simulations
(Collins, 2008), etc. Yet it hasn't been explored in the computational
design optimization of building forms under winds using CFD. In this
paper, a member of Gaussian process regression called co-kriging (For-
rester et al., 2007) is built using correlated CFD inputs with two model
fidelities as mentioned above. The co-kriging model serves as a
high-fidelity predictor of the aerodynamic quantities of buildings with
different cross-sectional forms. We further apply this approach to a shape
optimization problem with multi-fidelity inputs.

2. The shape optimization problem formulation

The shape optimization problem can be expressed as follows (Ber-
nardini et al., 2015):

min
q

GðqÞ
s:t: CrðqÞ ¼ 0 r ¼ 1; 2; :::;R

DsðqÞ � 0 s ¼ 1; 2; :::; S
(1)

where q is the design variable vector that is used to define the external
geometry of the bluff body, G(q) is a vector of objective functions. The
constraint functions represent R equality constraints and S inequality
constraints imposed on the design variables. The goal is to minimize the
competing aerodynamic objectives represented by the mean drag force
coefficient μCd and the standard deviation of the lift force coefficient σCl.
The objective function vector is therefore defined as:

GðqÞ ¼ ½μCd ; σCl� (2)

where μCd and σCl are determined through CFD simulations. The con-
straints are used for geometric requirements on the shape, such as sym-
metry properties, maximum absolute displacements, etc.

Since multiple objectives are involved in the optimization, the opti-
mization problem will yield a set of optimal solutions called Pareto-
optimal set or Pareto front (Deb, 2001).

3. Solution strategy

3.1. Design of experiments (DoEs)

The purpose of conducting design of experiments is to generate
sampling points for the calibration of the surrogate model. At each
sampling point, the aerodynamic objective functions are evaluated
through CFD analyses, which serve as the training set for surrogate
modeling. Since we have no prior knowledge about how the objective
output functions vary over the input space, the principle of a sampling
plan is to fill the design space with sampling points as uniformly as
possible. For this purpose, we employ a space filling strategy named Latin
Hypercube sampling (LHS) (Forrester and Keane, 2008) for uniform

random sampling.
In the context of multi-fidelity sampling data, the subset design

strategy can be used, in which samples for a high-fidelity model are taken
as a subset of low-fidelity samples. If multiple subsets of the high-fidelity
points can be found to satisfy the Latin Hypercube design requirements,
we choose the one with maximal minimum distance between sampling
points. If no subset can satisfy the Latin Hypercube design requirements,
we choose one with maximal minimum distance between the points in
the subset (Huang et al., 2006). It should be noted that high-fidelity
sampling points are not necessarily constrained to be a subset of
low-fidelity points. Here we employ the subset design strategy due to its
numerical convenience for the case study.

3.2. Surrogate modeling

Once the sampling points for multiple fidelity models have been
generated in DoEs, CFD simulations are ready to be run at each sampling
point to obtain the observations of aerodynamic quantities of interest.
These are used to build surrogate models based on Gaussian process
regression.

3.2.1. Basic kriging modeling
The Gaussian process regression for a single-fidelity surrogate model

was initially introduced in geostatistics as kriging (Matheron, 1963). First
an overview of the kriging scheme for the function prediction is pre-
sented. The fundamental hypothesis is that the true underlying function
YðxÞ can be modeled as a realization of a Gaussian stochastic process of
the form

YðxÞ ¼ μþ ZðxÞ (3)

where μ is an unknown constant trend function and Z is a Gaussian
process with zero mean and stationary covariance

ΣðY;YÞ ¼ σ2K ¼ σ2

0
@ corr

�
Y
�
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Y
�
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�
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A
(4)

The generalized exponential kernel function can be used to construct
the covariance function, which has the correlation form as (Forrester and
Keane, 2008)

Kðx; x'Þ ¼ exp

 
�
Xd
j¼1

��xj � x'j
��pj

θj

!
(5)

The hyper-parameter pj determines the smoothness of the approxi-
mated function, and θj indicates whether the function is active or not
along dimension j. The values of hyper-parameters can be obtained
through the maximum likelihood estimates principle (MLE), in which the
log-likelihood function of the observations y ¼ ½y1;…; yn�T can be
expressed as

ln
�
LðyÞjμ;σ2;p; θ� ¼ �n

2
lnð2πÞ � n

2
ln
�
σ2
�� 1

2
lnjKj

� ðy� 1μÞTK�1ðy� 1μÞ
2σ2

(6)

Given a set of the observations y ¼ ½y1;…; yn�T , the function value is
predicted at an arbitrary location xðpÞ based on its kriging correlations
with observations, which can be analytically derived as the conditional
Gaussian process. The joint distribution over y ¼ ½y1;…; yn�T and yðpÞ can
be written as

P
�
y; yðpÞ

� ¼ N
�
y; yðpÞ

��1μ;Σ�yð1:n;pÞ;yð1:n;pÞ�� (7)

Then the mean and variance for the conditional Gaussian process
PðyðpÞjyÞ can be computed as
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