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A B S T R A C T

The effect of coupled transverse and in-line motion of an elastically mounted rigid circular cylinder, subjected to
vortex induced vibrations (VIV), is predicted using a reduced-order model. The model comprises of coupled wake
and structural oscillators, where the nonlinearities in the fluid damping and forcing terms of the structural
oscillator are retained. The classical van der Pol equation is used to model the wake oscillator. The unknown
model constants are tuned to fit to experimental data. The influence of these tuning constants on the model
performance are identified. The nonlinear contributions are shown to be insignificant in predicting the VIV
characteristics associated with the transverse (y-only) oscillations of the cylinder at low Re. Surprisingly, the
nonlinear terms were found to play a key role in predicting the two degree-of-freedom (2 DoF) motion of the
cylinder. The model results for the cylinder with mass ratios in the low and moderate ranges are in good
agreement with the experiments.

1. Introduction

Alternate shedding of vortices behind a circular cylinder causes
oscillatory forces on it. When the frequency of vortex shedding is close to
one of the natural frequencies of the structural system, the bluff body
tends to vibrate and its amplitude is significantly enhanced in the syn-
chronization ranges. This is termed Vortex Induced Vibrations (VIV),
which indeed is a two-way coupled Fluid Structure Interaction (FSI)
phenomenon. In reality, the structural vibration alters the surrounding
flow field which in turn modifies the forces induced on the cylinder. The
occurrence of VIV can be observed in flow over marine cables, offshore
pipelines, risers etc. In the literature, investigations on VIV have mainly
focussed on drag reduction through vortex shedding suppression (Huang,
2011; Bearman and Owen, 1998; Patil et al., 2011; Sarwar and Ishihara,
2010; Muddada and Patnaik, 2010) and few attempts on harvesting en-
ergy (Bernitsas et al., 2008; Antonio et al., 2012; Dhanwani et al., 2013).
Since most of these applications have a circular cross section and a cy-
lindrical geometry, VIV of circular cylinder has been extensively studied
(see Kawai, 1993; Khalak and Williamson, 1997, 1999; Blackburn et al.,
2001; Sarpkaya, 2004; Williamson and Govardhan, 2004).

Experiments on VIV of long slender cylinders are relatively few,
owing to the need for large facilities and relatively complicated instru-
mentation. Alternately, for the range of turbulent Reynolds numbers that

occur in most practical applications, numerically solving the equations of
structural motion coupled to fully non-linear Navier-Stokes equations
involve high computational cost and difficulties in implementation. In
the review of Wu et al. (2012), detailed discussions of recent experiments
and computational works on VIV of long slender structures can be found.
Such complexities in the setting up of experiments and computational
limits regarding full scale numerical simulations have paved the way for
alternate reduced-order semi-empirical models. These VIV models are
reviewed by Gabbai and Benaroya (2005).

Lower order models typically employ a separate mathematical
equation to represent the wake, and a structural oscillator, formulating
the dynamics of the vibrating structure as well as its coupling. An early
model of Bishop and Hassan (1964), modelled the wake dynamics using a
single wake variable governed by a van der Pol equation. For a detailed
study on the nature of wake oscillator model see Ref. Xu et al. (2015).
Balasubramanian and Skop (1996), used wake oscillators (diffusive van
der Pol equation) that are continuously distributed along the span of a
slender structure, thereby describing 3-dimensional spanwise features of
vortex shedding. In the subsequent improvements (Skop and Balasu-
bramanian, 1997; Plaschko, 2000; Skop and Luo, 2001), the van der Pol
oscillator was further modified for 3-dimensional flows past structures
having high aspect ratio. Larsen (1995) introduced a single DoF model
for VIV of light and flexible structures based on generalization of van der
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Pol type forcing function. Other categories of low-order models include
the Voltera theory based model for the application of VIV of large-span
bridges (Xu et al., 2017), the nonlinear oscillator based on circle map
(Olinger, 1998), the force-decomposition models originally based on the
work of Sarpkaya (1978), and the recent Proper Orthogonal Decompo-
sition (POD) based methods, (Lieu et al., 2006; Liberge and Hamdouni,
2010), applied to general fluid-structure interaction problems. The
recent 2 DoF circular cylinder model, based on linear theory, proposed by
Dhanwani et al. (2013), was used in designing an energy harvester.

Historically, two-dimensional uniform flow over an elastically
mounted circular cylinder has been extensively chosen as a representa-
tive model for studying VIV (Khalak and Williamson, 1996, 1999;
Govardhan and Williamson, 2000; Dahl et al., 2010). The relevance of
such a paradigm to the actual 3-dimensional complex fluid flow systems
was highlighted by Williamson and Govardhan (2008). In most VIV
studies of circular cylinders, the effect of in-line motion was assumed to
be insignificant, with a focus on the transverse vibrating (y-only) motion.
Relatively recent experiments (Jauvtis and Williamson, 2004; Sanchis
et al., 2008) have shown the significance of in-line motion in under-
standing VIV of cylinders with low mass ratios (ratio of cylinder mass to
displaced fluid mass). According to Jauvtis and Williamson (2004), the
effect of such a coupled in-line and transverse motion results in a newly
discovered triplet (2T) mode of vortex shedding behind the cylinder. A
new super upper branch in the cylinder amplitude response was observed
for low mass ratios.

Facchinetti et al. (2004) have classified the low-order models for VIV
of an elastically mounted cylinder, freely oscillating in the transverse
direction when subjected to uniform 2-dimensional flow, based on the
type of coupling between the wake dynamics and the structural motion.
The three types of linear coupling, namely displacement, velocity and
acceleration, formulate the displacement, velocity or acceleration of the
cylinder, respectively, to be the forcing term in the wake oscillator.
Facchinetti et al. (2004) inferred based on linear theory that inertial or
acceleration coupling is the most effective coupling strategy to predict
both qualitative and quantitative features of 2-dimensional VIV
phenomenon.

The major focus of all the reduced order models of VIV has been to
capture the amplification of cylinder motion in the synchronization
regime and the lock-in range of frequencies. To the authors’ knowledge,
there is no single reduced order model in the literature that quantita-
tively predicts these features over a wide range of mass ratios for 2 degree
of freedom (DoF) motion of circular cylinder for different flow Reynolds
numbers. In the present work, a 2 DoF (both in-line and transverse vi-
brations of the cylinder) model is proposed by including certain non-
linearities in the structural model. The model is tuned to match the
experimental results of Jauvtis andWilliamson (2004) and to capture the
effect of 2 DoF cylinder vibrations in different ranges of mass ratios. The
influence of nonlinear terms in the wake oscillator model is analyzed.
The nonlinear contributions are found to be relatively insignificant in the

low Re regimes (Re < 300) compared to flow regimes at higher Re. The
coupling between the two oscillators, under pure transverse and com-
bined motion are analyzed for the correlation effects.

This article is organized into five sections. Section 2 presents the 2
DoF model formulation and the solution methodology. In Section 3,
validations of the model, against pure transverse cylinder oscillations and
pure in-line vibration experiments, and the behaviour of the tuning co-
efficients are discussed. The numerical predictions of the model with
application to 2 DoF cylinder motion and the significance of nonlinear
contributions are discussed in Section 4. Concluding remarks are given in
Section 5.

2. Model formulation

A simplified model of circular cylinder cross-section free to oscillate
in transverse and stream-wise direction subjected to uniform flow is
shown in Fig. 1a. The rigid cylinder is elastically mounted with effective
stiffness kx; ky and damping ratios ζx; ζy along x and y directions
respectively (Dhanwani et al., 2013). In the present study, dynamics of
the cylinder wake is modelled using a reduced order wake oscillator,
while the structural oscillator captures cylinder motion. The coupling
between the two oscillators and the x and ymotion is pictorially depicted
in Fig. 1b.

The coupled equations governing the structural oscillator and the
cylinder motion in transverse and stream-wise directions, (Dhanwani
et al., 2013), are given as
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where the (⋅) represents the time derivatives. The non-dimensional pa-
rameters used in the above equations are defined in Table 1. U∞ is the
free stream velocity, ν is fluid kinematic viscosity, D is the cylinder
diameter, L is the span-wise length of cylinder, fX and fY are the fre-
quencies of cylinder motion in the x and y directions respectively, and the
added mass coefficient CA ¼ 1 for a circular cylinder. The wake variables
q, p represent, qualitatively, the normalized lift and drag force co-
efficients respectively (Ogink and Metrikine, 2010). The model includes
asymmetric fluid-damping like terms for _X in Eqn. (2) and for _Y in Eqn.
(1). In the 2 DoF model (Dhanwani et al., 2013), the coefficient of these
fluid-damping like terms is taken as χ

μ ¼ 0 for the adopted analytical

method. The experiments of Jauvtis and Williamson (2004) suggest that
the effect of coupled X and Y motions cannot be underestimated,
particularly for the cases of cylinder motion with low mass ratios (μ < 6).
The fluid-damping coefficients and the parameters M;N are defined as
γ ¼ CD0

4πSt gðtÞ, χ ¼ CL0
4πSt gðtÞ,M ¼ CD0þ1

ð16π2St2μÞ gðtÞ, N ¼ CL0
ð16π2St2μÞ gðtÞ where CD0,

Fig. 1. (a) Cross-sectional view of an elastically
mounted rigid circular cylinder subjected to uniform
flow (b) schematic of coupled 2 DoF motion in the
present model.
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