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A B S T R A C T

From the view point of physical mechanism, stochastic dynamic excitations, such as earthquake and strong wind,
subjecting on structures can be represented by a physical model with elemental random variables. In this article, a
physical model for wind speed process is investigated to obtain the probability density function of wind speed
process. Firstly, the stochastic Fourier spectrum, consisting of wave-number spectrum and phase spectrum, is
introduced. The wave-number spectrum displays the energy distribution over frequency domain. The phase
spectrum is viewed as the evolutionary result driven by characteristic velocity of air vortex. After that, the
elemental variables are carefully selected in term of physical relation and the measurement data collected at a
wind observation station is analyzed to gain the statistics of the elemental random variables. With the help of
probability density evolution method (PDEM), the probability density information of wind speed process can be
obtained. The comparison with the measurement data validates the effectiveness of the stochastic Fourier spec-
trum to simulate the wind speed process.

1. Introduction

For a large number of structures, such as high buildings and long span
bridges, wind load is one of the most important dynamic excitations
which may causes the loss of the serviceability or even totally failure of
the structure. Because of highly stochastic and non-linearly properties,
the fluctuating wind simulation becomes one of the most important is-
sues in wind excitation modeling and lots of pioneer researchers have
devoted their effort into this field.

In history, Von Karman was the earlier one to model the fluctuating
wind. In his work, by introducing Gaussian process assumption, the
concept of power spectrum density (PSD) was proposed (Von Karman,
1948). Then, the well-knownDavenport spectrumwas proposed in 1960s
based on the records at different heights (Davenport, 1961). The
following researchers, such as Kaimal, developed this approach to satisfy
the requirements for different structures and terrain (Kaimal et al., 1972).
Virtually, the information of PSD is not enough for description of the
time-domain process since the initial phases are undefined. In general
simulation schemes, such as spectral representation method (Shinozuka,
1971; Di Paola, 1998), it is often assumed that the phases are indepen-
dent random variables uniformly distributed in the domain [0, 2π]. These
works established the frame for simulating fluctuating wind on the base

of power spectral density. However, in traditional methods, the proba-
bilistic characteristics of fluctuating wind process are quite limited,
where the information higher than 2nd order is omitted. Also, researches
have revealed that for strong wind, such as typhoon, behavior of fluc-
tuating wind process may distinctly depart from the Gaussian situation
(Kareem, 1978; Gurley et al., 1996; Gong and Chen, 2014; Hui et al.,
2017). These drawbacks arise from that the PSD models are not capable
of describing the integrated probabilistic information of wind speeds. It is
then desirable to obtain the probability density function which encom-
pass the whole probabilistic information.

In fact, PSD model is a phenomenology based approach so that it is
difficult to represent the behavior of fluctuating wind comprehensively.
Therefore, physical way is needed for exquisite depiction. Along with the
basic idea of physical stochastic system, it is some elemental variables in
the physical model are uncontrollable that the process possesses the
stochastic features (Li, 2006). Based on this idea, Li and Yan (2009) and
Li et al. (2012) propose a stochastic Fourier function which stresses the
key role of physical relation in the stochastic excitations modeling. Ac-
cording to the energy spectrum equation of turbulence, a bilinear
amplitude spectrum is proposed by Li and Yan (2009) and Li et al. (2012)
which display the distribution of energy spectra over inertial sub-range
and energy containing sub-range. Then the phase spectrum is
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established with the help of the concept, starting-time of phase evolution,
which gives a physical description of the phase evolution in wind speed
process (Li et al., 2013). The analysis using the measured data collected
in east China validated approach preliminarily (Yan, 2011). On the other
hand, the newly developed probability density evolution method pro-
vides a useful tool to capture the probability density function of sto-
chastic dynamic system (Li and Chen, 2008, 2009). Thus, This article is
dedicated to propose a new approach, based on stochastic Fourier spec-
trum and probability density evolution method, to obtain the probability
density function and consequently other probabilistic information of
wind speed process, which can be of significance in reliability assessment
of engineering structures. Furtherly, the model is validated by the data
collected from an strong wind observation station.

The contents are arranged as following: the stochastic Fourier spec-
trummainly deduced from the dynamic equation for the energy spectrum
is introduced and updated in section 2; the statistics of the elemental
random variables are modeled using the wind measurements collected in
Xiamen in section 3; section 4 introduces the probability density evolu-
tion method which will be applied to research the probability density
evolution of wind speed process; section 5 provides the probability
density distribution of the wind history derived from the physical model
integrated with the probability density evolution method, and the
contrast of the simulation and observations demonstrates the effective-
ness of this model; moreover, some important statistical characteristics
deduced from stochastic Fourier spectrum are also inspected in section5.

2. Physical model for fluctuating wind speeds

2.1. Stochastic Fourier spectrum

From the view point of physical stochastic system, a physical model
with elemental variables can be established to represent the process
logically. For instance, let uðΘ; tÞdesignate a record of fluctuating wind
speeds while Θ is the elemental variables which determine the process
through the definitive physical model uðΘ; tÞ. Virtually, a Fourier trans-
form of uðΘ; tÞ, denoted by FðΘ; nÞ, contains the same information as the
original process uðΘ; tÞ according to Winner-Khintchine formula:

FðΘ; nÞ ¼ 1ffiffiffiffi
T

p ∫ ∞
�∞uðΘ; tÞe�i2πntdt (1)

uðΘ; tÞ ¼
ffiffiffiffi
T

p
∫ ∞
�∞FðΘ; nÞe�i2πntdn (2)

On account of this equivalence, the Fourier function FðΘ; nÞ can be
defined as the physical model of fluctuating wind speeds. It is believed
the source of the randomness of fluctuating wind lies in the randomness
of Θ. Once the Fourier function is established and the distribution of
elemental variables is identified, the model can be used to carry out the
analysis for the stochastic system.

Generally, the Fourier function FðΘ; nÞ is a complex and can be
rewritten as the product of two parts:

FðΘ; nÞ ¼ jFðΘ; nÞjeiφðΘ;nÞ (3)

where jFðΘ; nÞj is the amplitude spectrum and φðΘ; nÞ the phase spec-
trum.

It is commonly recognized that the amplitude describes the distri-
bution of energy over frequency domain where the phase spectrum
controls the shape of the time history. The amplitude spectrum can be
related to wave-number spectrum if Taylor's hypothesis is accepted:

jFðΘ; kÞj ¼
ffiffiffiffiffi
U
2π

r
jFðΘ; nÞj

k ¼ 2π
U

n

(4)

To model the wave-number spectrum rationally, basic knowledge of
energy spectrum of turbulence is needed. The energy spectrum equation
of turbulence (See Fig. 1) reads (Hinze, 1975):

∂
∂t EðkÞ þ ζðkÞ dU1

dx2
¼ F3ðkÞ � 2νk2EðkÞ (5)

where EðkÞ ¼ jFðkÞj2 is the energy spectrum of turbulence in wave-
number domain, F3ðkÞdenotes the Fourier transform of the third order
velocity correlation which transport the energy from low wave-number
domain to high wave-number domain, ζðkÞ represents the energy trans-
portation caused by the shear in main flow.

Integrate the equation (5) from 0 to k over wave-number domain, we
can obtain:

ε ¼ 2ν∫ k
0k

2EðkÞdk � dU1

dx2
∫ ∞
k ζðkÞdk � ∫ k

0F3ðkÞdk (6)

where ∫ ∞
0 ζðkÞdk ¼ u1u2 and ε ¼ �u1u2 dU1

dx2
are utilized.

To solve the integral equation (6), the Heisenberg's theorem of energy
transfer is introduced (Katul and Chu, 1998):

∫ k
0F3ðkÞdk ¼ �2α'∫ ∞

k

ffiffiffiffiffiffiffiffiffi
EðkÞ
k3

r
dk∫ k

0k
2EðkÞdk (7)

where α' is a constant.
In the inertial subrange, Tchen's assumption is adopted since the

interaction between the turbulence and the main flow is relatively weak
(Katul and Chu, 1998):

�dU1

dx2
∫ ∞
k ζðkÞdk ¼ α''

 
dU1

dx2

!2

∫ ∞
k

ffiffiffiffiffiffiffiffiffi
EðkÞ
k3

r
dk

where α'' is another constant. Meanwhile, a negligible shear rate can be
assumed. As a result, an approximate solution of the integral equation (6)
in the inertial subrange can be derived as follows:

EðkÞ ¼
�

8
9α'

�2=3

ε2=3k�5=3

In the energy containing subrange, an intense interaction between the
turbulence and main flow exists and dominates the integral equation (6)
comparing to other terms, thus we have:

�dU1

dx2
∫ ∞
k ζðkÞdk ¼ α''

dU1

dx2

h
2∫ k

0k
2EðkÞdk

i1=2
∫ ∞
k

ffiffiffiffiffiffiffiffiffi
EðkÞ
k3

r
dk

which combined with (7) leads to:

EðkÞ ¼ 1
α''

ε
dU1
dx2

k�1

To conclude, the solution of equation (6) over energy containing sub-
range and inertia sub-range have the following form:

Fig. 1. Illustration of the homogeneous shear flow.
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