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ARTICLE INFO ABSTRACT

The present article focuses on the analysis of the equations that describe the flow when a high speed train enters a
tunnel. The disparity in time and length scales allows the problem to be decomposed in different regions and
regimes when matched appropriately produce the full description of the flow. The aforementioned regions are the
flow upstream and downstream of the train, the areas near the nose and tail of the train, and the flow in the gap
between the train and the tunnel. The regimes are analysed based on the flow regions, time scales, length scales
and velocity scales. All those regions and regimes are conveniently formulated and the flow key scales are ana-
lysed and described, which allows for a simplified and robust formulation. The aforementioned formulation is
implemented in a computational program that needs some external coefficients, namely the pressure signature of
the train, that should be obtained only once and it could be derived from experimental data or CFD. Comparison
with experimental and numerical data from other references are provided. Finally, the thermal problem is briefly
introduced and some comments on the tunnel cooling problem are considered.
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1. Introduction

The aerodynamic effects occurring in a tunnel as a train moves
through it, are totally different from those observed in the open air and
their amplitude and severity grow as the train speed is increased
(Raghunathan et al., 2002; Schetz, 2001). When a train enters a tunnel it
generates an over pressure in front of it that is much larger than the one
generated when it circulates in the open air (Baron et al., 2001; Choi and
Kim, 2014). This over pressure is due to the confinement of the air be-
tween the tunnel and train walls (Cross et al., 2015). This induces a wave
along the tunnel upstream of the train, leaving the air moving behind the
wave, and forces part of the air to leave the tunnel through the region
between the train and tunnel. The over pressure in front of the train
grows as the train enters the tunnel, since the volume occupied by the
train grows, and there is a larger amount of air that needs to flow from
the front of the train to the entry portal which is at atmospheric pressure;
that requires overcoming a larger friction force, and hence increasing
pressure at the front of the train (Ko et al., 2012).

Once the train has completely entered the tunnel, the above
mentioned scenario changes. An observer fixed to the train sees air
coming to the front of the train with a speed lower than the train speed,
and downstream, where the train wake has vanished, he sees that the
velocity with which the air escapes is quite similar to the one with which
it came in the front, due to the continuity and incompressible nature
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caused by the low Mach number (William-Louis and Tournier, 2005).

There is no momentum variation and the train resistance is due to the
pressure difference in the front and the back of the train, and the friction
in the train and tunnel walls (Raghunathan et al., 2002; Schetz, 2001).
Once the tail enters the tunnel, a change in the aforementioned condi-
tions is noted as a decrease in pressure which generates an expansion
wave that travels in the train direction.

The compression and expansion waves get reflected when reaching
the tunnel portals as well as being partially reflected when reaching the
train inside the tunnel (Vardy, 2008; Yoon et al., 2001); this creates a vast
and complex pattern that depends on the train speed, the tunnel length,
the ratio between the train and tunnel diameter, the friction in the tunnel
and train walls, which dampens the waves, and the existence of interior
shafts and junctions that makes the problem even more complex.
Nevertheless, the first compression and expansion waves are the most
critical (Maeda et al., 2000; Yoon and Lee, 2001), since the rest get
damped with time, particularly if the tunnel length is of the order of
kilometres. As the distance travelled by the train inside the tunnel grows,
the pressure loss between the entry portal and the train tail also grows, so
that it can maintain the flow behind the train; as such the pressure behind
the train goes below the ambient pressure.

The compressibility and friction effects in the tunnel become impor-
tant for the description of the flow upstream as well as downstream of the
train, and if the tunnel is long enough, the waves can be damped and
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disappear (Raghunathan et al., 2002).

The flow in the whole tunnel (far-field) needs to be considered as well
as the flow near the vehicle. Both domains are strongly dependent on
each other. One major flow feature inside the tunnel are pressure waves
travelling along it (Anthoine, 2009; Ko et al., 2012) upstream and
downstream of the train. The downstream and upstream evolution of the
pressure waves have to be coupled with the flow over the train. In long
tunnels a significant amount of thermal energy may be transferred to the
tunnel environment. The quantity of heat released per unit time in the
tunnel is the power consumed by the train. This thermal energy increases
the temperature of the tunnel wall. The piston effect of the train only
cools a small proportion of the tunnel length. The cumulative effects of
trains circulating over long periods can raise the tunnel wall temperature
to undesirable values (Baron et al., 2001; Barrow and Pope, 1987;
Thompson et al., 2011). To approach this problem, it is necessary to
describe the flow when the train is inside the tunnel and also the
remaining flow in the tunnel until the next train arrives. In the present
study we analyse the different flow regimes that appear inside the tunnel
and around the train to have an approximation of flow velocities and
temperatures to be used in the thermal problem.

In this paper we present the one-dimensional approach that has been
widely used (Barrow and Pope, 1987; Hieke et al., 2011; Woods and
Pope, 1981; Yoon et al., 2001). The main reason to use this approxima-
tion is that the tunnel length to tunnel diameter ratio is large (Linan et al.,
2016; Shapiro, 1953, 1964), this is also valid with the equivalent hy-
draulic diameter of the gap between train and tunnel. One dimensional
flow equations are solved usually making use of control volume tech-
niques (Baron et al., 2001; Ricco et al., 2007) which additionally need
complex geometry routines in order to simulate the train evolution inside
the tunnel (Maeda et al., 2000; Yoon et al., 2001); an even more complex
scheme is needed if a full three dimensional resolution is desired (Ogawa
and Fujii, 1997). Meanwhile, the discretization of the linearized version
of Riemann invariants can provide comparable results while being at the
same time a robust numerical scheme, as has been done and presented as
an extra at the end of the present work.

The flow around the nose and tail is three dimensional, but the con-
tinuity, momentum and energy equations, applied in integral form to the
appropriate control volume, allows an easy connection between the full
tunnel with the gap between tunnel and train by using pressure loss co-
efficients for the nose and the tail of the train (Baron et al., 2001).

An analysis of each of the terms in the motion equations is performed in
order to show their relative importance and to simplify the problem to be
solved. The parameter assumed to be small is the squared Mach number
based on the train speed (for a train circulating at 360 km/h the squared
Mach number is lower than 0.09). This kind of formulation is useful for the
design of high speed lines with dozens of tunnels where the health and
comfort limits, pressure on the doors, etc., should be evaluated.

An asymptotic solution for an infinite tunnel is also presented, which
could serve as a raw solution for fast pressure and velocity calculations in
very long tunnels (of the order of tenths of kilometres).

The aiming of this theoretical development is to obtain a model that
can be solved numerically in the order of minutes for problems that
require the general information of the flow inside the tunnel, such as the
overall power dissipated by the train along the tunnel, or the general
temperature rise on the air. Particularly, the problem of temperature rise
on the tunnel wall over long periods requires the calculation of hundreds
of thousands of train runs; doing a complex computation for each passing
would make the problem unsolvable, and that is where a simplified
analysis such as the one proposed here can provide a general and robust
tool for the computation of the flow inside the tunnel.

2. Governing equations in the tunnel far from train
As is well known, in a fluid flow with two different characteristic

dimensions Dr and Ly (Dy is the hydraulic tunnel diameter and Ly the
tunnel length), where Dr< Ly, the estimates of the order of magnitude of
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terms in the Navier-Stokes equations provide a characteristic transversal
speed, v;, very small compared with the characteristic longitudinal speed,
u; (v¢/u. ~ Dr/Lr<1). In addition the characteristic transversal pressure
variation, (Ap),, is very small compared to the characteristic longitudinal
pressure variation, (Ap)., independent of the Reynolds and Strouhal
numbers (Linan et al., 2016; Shapiro, 1953, 1964). The practical
conclusion is that it is possible to consider a unidirectional flow with
speed u and uniform pressure in each tunnel section, except near the nose
and tail of the train (Baron et al., 2001). Additionally, if the Reynolds
number pu.Dr/u is large, the flow is turbulent and the velocity and
temperature (u, T) profiles are almost uniform in each tunnel section
(White, 2003). As the pressure and temperature are uniform, all the
remaining thermodynamic variables, like density p or specific entropy S,
are also uniform. In the above conditions, the motion equations are
(Shapiro, 1953; Woods and Pope, 1981; Raghunathan et al., 2002)
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where t is the time, x the coordinate along the tunnel measured from the
tunnel entry, 7 = %T pulu| the friction stress at the tunnel wall, with Ar
being the Darcy-Weisbach friction coefficient for turbulent regime of the

tunnel wall, gr = %p|u|{cpTwT - <cpT +%u2)} the heat received per

unit area and time by the air through the tunnel wall (this is the Reynolds
analogy for heat transfer on a wall caused by convection), ¢, the specific
heat at constant pressure, and T, the temperature at the tunnel wall
(since for this problem iu?/c, T<1, the kinetic energy will be neglected
from the Reynolds analogy, so that qr = %T plul{cyTwr — ¢, T}). These
terms (friction stress and heat transfer on the wall) account for the two-
dimensional effects generated by the high gradients on the walls of train
and tunnel. The state equation for perfect gasses is also used,
p = (¢p — ¢y)pT, where ¢, is the specific heat at constant volume. For
more details of this model, see appendix B.

It is worth to mention that the Darcy-Weisbach friction coefficient
and the Reynolds analogy assume that the turbulent structure is not
affected by the unsteady process that takes place inside the tunnel, which
is a common approximation in these problems (Baron et al., 2001;
Raghunathan et al., 2002; William-Louis and Tournier, 2005; Cross et al.,
2015). This approximation is valid except at the points where the pres-
sure wave passes. Since this time is very small compared with the whole
time in the problem and since a key feature in the present work is to keep
the formulation as simple as possible, we will not account for this effect.

3. Order of magnitude of (Ap)., uc and (AT),

We will denote ambient conditions with subscript “a”, and tunnel
values with the subscript “T”. In order to estimate the pressure increment
inside the tunnel it should be taken into account that it is generated by
the train motion. By applying the momentum equation in integral form to
a control volume between two sections upstream and downstream of the
train, with a reference system fixed to the train, the characteristic pres-
sure increment is obtained
(Ap) A ~ R ~ CppU?A, ()]
where Ar and A are the cross section of tunnel and train respectively, £ is
the aerodynamic drag of the train, Cp, is the drag coefficient, and U is the
train speed. According to (4), the order of magnitude of the pressure
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