
Recent advances in computational wind engineering and fluid–
structure interaction

Rainald Löhner a,n, Eberhard Haug b, Alexander Michalski b, Britto Muhammad b,
Atis Drego b, Ramakrishna Nanjundaiah b, Raham Zarfam b

a CFD Center, M.S. 6A2 College of Science, George Mason University, Fairfax, VA 22030-4444, USA
b SL Rasch GmbH, Kesslerweg 22 Oberaichen, Germany

a r t i c l e i n f o

Keywords:
Butterfly effects
Rogue loads
Adjoint estimation of boundary conditions

a b s t r a c t

Recent developments that are pertinent to the particular field of computing lightweight structures
exposed to windloads are described. The topics covered include computational fluid dynamics (CFD),
computational structural dynamics (CSD) and fluid–structure interaction (FSI) for wind vs. aerospace
engineering, recent hardware and software trends, butterfly effects, rogue loads, and adjoint estimation
of boundary conditions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis and design of lightweight structures exposed to
windloads requires an accurate knowledge of the ensuing flow-
fields and their effect on structural loads and deformations. Time
and again structures of this kind have failed catastrophically,
highlighting the need to continuously improve the capabilities to
calculate all relevant physical mechanisms involved.

All computational building blocks required, computational fluid
dynamics (CFD), computational structural dynamics (CSD) and
fluid–structure interaction (FSI) techniques, have progressed
rapidly over the last three decades. A number of excellent reviews
summarize the state of the art in CFD (Cochran and Derickson,
2010; Tamura, 2010; Blocken, 2014). The aim of the present paper
is to give a report on recent developments that are pertinent to the
particular field of computing lightweight structures exposed to
windloads. The first topic is concerned with the question as to why
computational wind engineering as applied to lightweight struc-
tures has lagged by almost 40 years similar developments in the
aerospace and naval sectors. The second topic covers recent
hardware and software developments and their consequences for
future field solvers. The focus then shifts to two phenomena that
have been discovered and debated recently: butterfly effects and
rogue loads. Both imply much higher CPU demands than expected,
highlighting the need to continuously improve field solvers. The
final topic is the wide field of boundary conditions. In particular,
the questions of the required accuracy as far as geometrical (how

many buildings? how far out?) and wind profiles at inflow
boundaries are considered.

2. Wind vs. traditional aerospace engineering

The use of computational fluid dynamics (CFD) and fluid–
structure interaction (FSI) to predict the behavior of lightweight
structures has lagged similar developments in aero- and hydro-
dynamics. A number of mundane reasons or excuses for this may
be offered:

� Large, state-funded research centers for aero- and hydro-
dynamics that dwarf similar institutions for wind engineering;

� large, centralized enterprises for the production of airplanes
and ships as compared to small engineering bureaus for wind
engineering;

� heavy reliance on simple, rule-based norms and/or norms
based on ‘this is how we always used to do it’ in civil engi-
neering as compared to ‘we have no norms because we never
did anything like this before’ in aerospace engineering.

The main reason, though, is that the requirements placed on
computational fluid dynamics, computational structural dynamics
and fluid–structure interaction techniques for lightweight, civil
engineering structures are much higher than those for typical
aerospace engineering. This may come as a surprise to many, but
consider the following:

� Aerospace bodies are typically streamlined. This implies that

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jweia

Journal of Wind Engineering
and Industrial Aerodynamics

http://dx.doi.org/10.1016/j.jweia.2015.04.014
0167-6105/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author at: CFD Center, M.S. 6A2 College of Science, George
Mason University, Fairfax, VA 22030-4444, USA.

J. Wind Eng. Ind. Aerodyn. 144 (2015) 14–23

www.sciencedirect.com/science/journal/01676105
www.elsevier.com/locate/jweia
http://dx.doi.org/10.1016/j.jweia.2015.04.014
http://dx.doi.org/10.1016/j.jweia.2015.04.014
http://dx.doi.org/10.1016/j.jweia.2015.04.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jweia.2015.04.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jweia.2015.04.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jweia.2015.04.014&domain=pdf
http://dx.doi.org/10.1016/j.jweia.2015.04.014

one can obtain accurate engineering predictions using the
Reynolds-Averaged Navier–Stokes (RANS) equations, i.e. sol-
ving a steady flow problem where the resolution of the
boundary layers is only in the direction normal to walls.
Lightweight structures (and many other civil engineering
structures for that matter) subjected to wind loads exhibit a
very unsteady incoming flowfield and, in most cases, regions of
massive flow separation. This implies that one has to start with
Large-Eddy Simulations (LES), i.e. unsteady simulations that
require fine, isotropic grids for the lengthscales one is trying to
resolve. Furthermore, the flowfield is heavily influenced by the
surrounding buildings and geography, implying that one has to
consider in the computational model not only the structure
whose behavior is to be predicted, but also many other objects
– which in turn increases geometrical complexity and leads to
larger gridsizes. As the vortices shedded from all buildings
interact, the region in between must also be meshed with fine,
isotropic grids.

� Deformations of aerospace bodies are mainly linear elastic. This
implies that one can formulate the structural response in terms of
eigenmodes with small deformations. Indeed, aeroelastic calcula-
tions in the aerospace industry are performed mostly with spe-
cialized small deformation boundary conditions which eliminate
the need to move and/or deform grids. Lightweight structures, on
the other hand, can behave very nonlinearly. Tents and parasols in
particular not only exhibit large jumps in stiffness when deformed,
but also have fasteners, dampers, shutters, and many other
mechanisms that behave nonlinearly. The computational tools
required to model such behaviors are typically explicit, nonlinear
structural dynamics solvers that require orders of magnitude more
compute power than modal integrators.

� While the flutter behavior of aerospace structures can be
obtained by coupling RANS (for CFD) and modal integration (for
CSD), the response of lightweight structures subjected to wind
loads requires the coupling of LES (for CFD) to nonlinear FEM
codes (for CSD). Moreover, the allowable timestep in the CFD
and CSD codes may be very different, prompting the need for
sophisticated fluid–structure integration schemes.

� While the timescales of aerospace structures are in the range of
seconds, the timescales in many lightweight structures are in the
range of minutes. The wind is always unsteady, and one requires
large integration times in order to obtain reliable statistics (see
below the section on rogue loads). It is not uncommon to have
coupled fluid–structure interaction calculations for lightweight
structures that require 20–30min of physical time.

In summary, one can see that the main reason why computa-
tional predictions in civil engineering have lagged those in the
aerospace and shipbuilding industries is found in the more com-
plex physics of the flow and the structure. These in turn lead to
mesh requirements, timestep counts, and ultimately, hardware
requirements that are much higher. Even after five decades of
continuous improvements in computing hardware, the prediction
of wind–structure interactions requires weeks on several hundred
cores. It is therefore not surprising that at present it is seldomly
used in practice.

3. Hardware and software trends

Scientific computing in general and supercomputing in particular
have taken advantage of a remarkable combination of advances over
the last three decades: on the one hand the number of transistors per
area has doubled every 18 months (so-called Moore's law), and
clockrates increased by two orders of magnitude. For programmers
and users, this perfect combination led to an almost utopian

environment: one could safely assume that without any further effort,
the speed of codes would automatically increase due to clockrates
and larger register/cache/memory, and larger problems could be run
due to larger memory. However, due to physical limitations, these
trends could not continue unabated. Given that heat generation
increases with the third power of the clockrate, a clear limit is in sight
here. In fact, anyone who has inspected a recent motherboard can
testify that most of the mechanical engineering effort is devoted to
chip cooling. Over the last five years, clockrates have stalled at 2.0–
3.0 GHz, and all indications are that, if anything, they will decrease in
the future. As far as packing more transistors per area, indications are
that Moore's law will continue for the foreseeable future (a decade).
The only way to higher CPU performance (loosely speaking: more
floating point operations per second [FLOPS]) is then via massive
parallelism. This can be achieved (and is pursued) at the level of the
chip (either via many cores or via specialized hardware, e.g. GPUs), via
a network of chips, or via a combination of both approaches. In fact,
most of the Top 500 supercomputers at present use a combination of
this kind to achieve outstanding performance.

The biggest problem facing supercomputer designers (and scien-
tific programmers) is that the speed increases of subcomponents
continue to advance at very different rates: peak processor speed
advances much faster than memory transfer rates, which in turn
advance much faster than DRAM latencies, which in turn advance
much faster than the interconnect switches between processors. This
so-called ‘red shift’ has led to a crisis for computer architects: current
designs are driven by complex latency-hiding mechanisms.

Field solvers, which are commonly used for computational fluid
and solid mechanics as well as electromagnetics, only perform a
limited number of operations for the data that is brought in and out of
memory. The gains obtainable via better compilers, prefetching,
mixing floating point operations, memory fetches, etc. have already
largely been exploited during the last decade. This implies that for
field solvers, this ‘red shift’ is particularly worrisome.

3.1. Access to RAM

The speeds of CPUs have advanced to such a degree that at
present field solvers are limited by the access speed to RAM. Given
the number of accesses to memory per timestep, the speed of a
field solver can be estimated quite accurately. This observation has
been documented repeatedly (see, e.g. Löhner et al., 2014), and can
also be observed in the comparison of speeds achieved between
CPUs and GPUs (Corrigan et al., 2011, 2012; Löhner, 2013; Löhner
et al., 2013). The aim that was pursued for several decades: obtain
the highest accuracy while minimizing floating point operations
has thus been supplanted by the new aim: obtain the highest
accuracy while minimizing memory access.

3.2. Access to out-of-processor data

Fig. 1a–c, taken from Löhner et al. (2012) shows timings from
runs of up to 50,000 cores. The code used is FEFLO, and a simple
explicit time-marching scheme Löhner (2012) is employed.

Fig. 1b, c shows a compilation of timings obtained for different
numbers of domains and cores per domain on two different
machines (Intel and AMD hardware). Note that once a core deals
with more than nelem¼300,000, CPU performance asymptotes
out to the values expected for the chips used in these machines
(O 10 s/elem/step6() ()− or O 0.55 10 s/pt/step5(·) ()−). However, for a
very small number of elements per domain, there appears a constant
delay per timestep of T O 0.1 sMPI = () (). Given that we have O 102()
MPI messages/exchanges per timestep, it appears that every time a
message is started via an MPI call, a latency of T O 10 sl

3= () ()− is
incurred.

R. Löhner et al. / J. Wind Eng. Ind. Aerodyn. 144 (2015) 14–23 15

Download English Version:

https://daneshyari.com/en/article/6757450

Download Persian Version:

https://daneshyari.com/article/6757450

Daneshyari.com

https://daneshyari.com/en/article/6757450
https://daneshyari.com/article/6757450
https://daneshyari.com

