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a b s t r a c t

This work presents an empirical model capable of describing the galloping bifurcation behaviour of a
bridge deck. It is based on a general polynomial form proposed by Novak, which we limit to the 5th
order. The advantage of choosing this function for modelling the vertical force coefficient is that the
asymmetry of the even terms is enforced in order to reproduce the sub-critical aeroelastic behaviour of
the bridge deck. The coefficients of the polynomial are identified from several pairs of displacement
amplitudes and the corresponding airspeeds, measured in a wind tunnel during dynamic tests on the
sectional bridge model. The identification is carried out using a first order harmonic balance technique. A
stability analysis is presented in order to highlight the need for such a model to capture the complete
bifurcation behaviour of the system. The resulting force coefficient of this full order model is compared
to the well known models of Parkinson and Novak. Finally, the concept universal of the curve is used in
order to discuss the galloping responses of square and rectangular cylinders, in comparison to that of the
bridge deck.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The phenomenon of galloping of bluff sections has been
investigated by a large number of researchers, using both basic
shapes, such as rectangular or square cylinders and engineering
structures (bridge decks or towers). Since the seminal work by
Parkinson and his co-workers (Parkinson and Smith, 1964;
Parkinson, 1989), there have been many studies addressing various
issues, such as aerodynamic modelling (Ge et al., 2002; Luo et al.,
2003), multiple degree-of-freedom structures (Pheinsusom et al.,
1989), oscillation control or suppression (Alam et al., 1995; Ogawa
et al., 1997) and various case studies (Kazama et al., 1993;
Yoshizumi and Inoue, 2002; Hirai et al., 1993). Nevertheless, few
attempts have been made to advance the theoretical understand-
ing of the phenomenon further than the first order quasi-steady
theory proposed by Parkinson and used many times since then, in
several variants. In particular, the complete bifurcation behaviour
of a system undergoing galloping oscillations has rarely been
addressed, except in the works of Novak (1969, 1972), van
Oudheusden (1995) and Vio et al. (2007).

In this work, we concentrate on the general polynomial form
proposed by Novak (1972) where a higher order polynomial model
is presented to improve the quasi-steady modelling of galloping. We

propose to limit the order of the polynomial to five and show that it
is sufficient to model the complete bifurcation behaviour of a bridge
deck section. The identification of the polynomial coefficients of the
model is carried out using a first order harmonic balance method on
the experimental dynamic measurements obtained in awind tunnel.

2. Experimental data

The experimental data presented in this paper originate from a
test campaign carried out by the authors in the wind tunnel of the
University of Liège (Andrianne and Dimitriadis, 2011). A generic
bridge deck section measuring 0.317 m wide by 1.2 m long is
supported in a modified version of the set-up proposed by Sarkar
et al. (2004). A set of 16 extension springs is used to replace the
guiding bars and ball bearings in order to allow the deck to
oscillate around its 6 degrees of freedom (DOFs). Note that
amongst the 6 DOFs, mainly heaving motion was measured during
the wind tunnel tests. The studied bridge section is rather bluff: it
is composed of a trapezoidal beam supporting the deck made of
two double traffic lanes. Windscreens with a equivalent porosity
of 42% are present at both sides of the bridge. In addition, an
acoustic panel is fixed on one side of the deck section. This barrier,
impermeable to air, is modeled by an aluminum plate of 30 mm
height and 2 mm thickness, along the whole span of the deck
(see Fig. 1).
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The motion of the model is measured using four PCB capacitive
accelerometers placed on the horizontal suspension arms. The
acquisition frequency is set to 1 kHz and signals are filtered
through a bandpass filter, limiting the frequency content between
2 Hz and 20 Hz.

The equation of the heaving DOF (y) is classically expressed as

m €yþc _yþky¼ Fexty ð1Þ

where m, c and k denote respectively the mass, damping coeffi-
cient and structural stiffness of the system. Their values are equal
to 11.9 kg/m, 9.0 kg/s/m2 and 10,066.7 N/m2 respectively. The term
Fy
ext on the right hand side of this equation corresponds to the
external forces per unit length applied on the heave DOF of the
system. The main purpose of this work is to model this term as a
function of the structural velocity _y, by writing

Fexty ¼ 1
2 ρV

2
1BCFy ðαðtÞÞ

where ρ is the air density, V1 is the free stream airspeed, B is the
chord of the bridge deck, CFy is the non-dimensional aerodynamic
force coefficient and αðtÞ is the time-varying angle of attack. After
making the assumption that the vibration amplitude of the bridge
is small, the angle of attack can be approximated by

αðtÞ ¼ αsþ
_y

V1

where _yooV1 and αs is a constant static angle of attack of the
bridge deck with respect to the oncoming flow. Following classic
galloping analysis, we can assume that αs44 _y=V1 and expand the
nonlinear force coefficient as a Taylor series around αs so that

CFy ðαðtÞÞ ¼ CFy ðαsÞþ
∂CFy
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where CFy ðαÞ is now the static lift coefficient curve of the bridge
deck, CLðαÞ. Fig. 2 shows the evolution of the lift and drag coefficients
with the static angle of attack αs. It is observed that the slope of the
lift curve, ∂CL=∂αjαs

is positive for angles of attack between �151 and

41. It becomes negative in the range of 41 to 241 and has its minimum
negative value around 221.

According to the Den Hartog's criterion, no galloping phenom-
enon can be observed for positive values of the lift slope. For that
reason, it was decided to investigate the galloping behaviour of the
bridge section for αs ¼ 191, where large negative values of the lift
slope are observed. Note that additional qualitative experiments
were performed at different angles of attack (01, 51, 101 and 151),
but no galloping instability was observed. This can be explained by
the relatively high damping coefficient (1.3%), which leads to large
values of the critical galloping airspeed.

The recovered displacement response amplitude is presented
in Fig. 3 in the form of a non-dimensional bifurcation diagram:
evolution of the maximum reduced amplitude of the vertical
motion with the non-dimensional airspeed. In this work, the
bifurcation diagram is expressed in its universal form, as proposed
by Novak (1969). For this purpose, the following non-dimensional
quantities are introduced:

η¼ ξ
n
β

U ¼ Vnn
β

where ξ and U are themselves non-dimensional variables defined
by ξ¼ y=B and Vn ¼ V1=ðωBÞ. Note that the multiplication ratio
n=β is inversely proportional to the Scruton number (defined by
Sc¼ 4πβm=ρB2). Hence the variables used by Novak are equivalent
to dividing the usual non-dimensional quantities η and Vn by the
Scruton number, which is a key number in the field of fluid–
structure interaction.

Introducing the usual dynamic parameters β¼ c=2mω and
n¼ ρB2=4m, with ω¼

ffiffiffiffiffiffiffiffiffi
k=m

p
, it is possible to express the equation

Fig. 1. Experimental set-up: suspension apparatus (upper figure) and deck geo-
metry (lower figure).
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Fig. 2. Lift and drag coefficients of the bridge section.
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Fig. 3. Universal bifurcation diagram of the bridge deck.
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