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a b s t r a c t

This paper provides a contribution to the testing of existing methods of analysis of extreme wind speeds
and to the development of better alternatives. A method is developed for synthesising a correlated
random time series with a Rayleigh amplitude distribution and an arbitrary auto-correlation. The auto-
correlation is selected to be the Von Karman model because the method is then used to generate 20,000
years of simulated hourly mean wind speeds. Annual maxima are extracted and exhibited on Gumbel
plots. Familiar problems with convergence to asymptotic forms are confirmed and a new problem is
revealed in that the annual rate parameter, previously believed to be constant, is found to vary
significantly in the range of the measured data encountered in practical extreme value analyses. With
the exception of newly developed penultimate methods, all the existing methods of analysis depend
implicitly on either convergence to an asymptotic form, or invariance of the annual rate parameter, or
both. This has serious implications for the accuracy of these methods, not only for the analysis of annual
maxima, but also for extensions of these methods developed to use more data from each year.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

All countries that are members of the W.M.O. produce wind
statistics in the form of mean wind speeds taken over an averaging
time of between 10 min and 1 h. In the UK, an averaging period of
an hour is used so, for convenience in all that follows, means will
be described as hourly means, with the understanding that in
other countries where a different averaging period is used, that
average is implied.

Modern wind engineering design depends on knowledge of the
probability distribution of the annual largest values of the wind
speeds that produce significant forces or stresses in the building or
structure being designed. These have to be deduced from available
meteorological records. The situation is complicated by the fact
that at a given site several different physical mechanisms may
each produce wind speeds that have to be considered. For
instance, a site on the eastern seaboard of the United States is
likely to be affected by winds derived from large scale depressions,
tropical storms (hurricanes, typhoons) and thunderstorms. More
rarely, the design wind speeds arise from only one such mechan-
ism. Such a case is termed a “simple climate”. A well-known
example is the UK, where strong winds relevant to design arise
exclusively from Atlantic depressions.

All the available methods for extracting probabilities of annual
maxima require that the data samples should be independent

of one another. For some mechanisms, such as hurricanes, this is
not a problem since these are easily identified well-separated
events, and thus independent. The analysis is usually conducted by
considering the maximumwind speed recorded in each hurricane.
The same applies to thunderstorms, with the proviso that care is
taken to eliminate the possibility of two storms in close succession
occurring within one synoptic episode. [Easily done by imposing a
minimum separation on the thunderstorms considered, as in
Lombardo et al. (2009).] Conversely, for winds derived from
extra-tropical depressions, the hourly mean data, being samples
from a continuous physical variable, inevitably are mutually
correlated, and thus successive samples are not statistically inde-
pendent. Consequently, all present methods rely on extracting
from the original sample an uncorrelated subset that has the same
annual maxima as the original data. Inevitably, this raises a
number of issues concerning the relationship between results
based on these subsets, and the statistics of the original correlated
data, which cannot be resolved since the correct answers for the
original data set are unknown. Thus there appears to be consider-
able merit in devising a method for the computer simulation of a
correlated data set of this type with a prescribed probability
distribution and correlation. This paper describes such a method,
and presents some results from applying existing methods to the
resulting data.

There is a considerable body of evidence which suggests that a
good model for the probability distribution of hourly mean wind
speeds from depressions is the Forward Weibull form with an
index lying between 1.8 and 2.2. [Even by 2004 there were well
over 400 references to the use of the Weibull distribution for wind

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jweia

Journal of Wind Engineering
and Industrial Aerodynamics

0167-6105/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jweia.2013.12.003

n Tel./fax: þ44 1582 661658.
E-mail address: harris-r1@virginmedia.com

J. Wind Eng. Ind. Aerodyn. 125 (2014) 146–155

www.sciencedirect.com/science/journal/01676105
www.elsevier.com/locate/jweia
http://dx.doi.org/10.1016/j.jweia.2013.12.003
http://dx.doi.org/10.1016/j.jweia.2013.12.003
http://dx.doi.org/10.1016/j.jweia.2013.12.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jweia.2013.12.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jweia.2013.12.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jweia.2013.12.003&domain=pdf
mailto:harris-r1@virginmedia.com
http://dx.doi.org/10.1016/j.jweia.2013.12.003


speeds in the Scirus database of peer-reviewed journals.] The
middle of this range is a Forward Weibull with index 2; otherwise
known as a Rayleigh distribution. Recently Harris (2008) showed
that the spectrum of the hourly mean wind speed, known for
historical reasons as the macro-meteorological spectrum (Van der
Hoven, 1957) consists of a broadband random component together
with a number of discrete deterministic “lines” associated with the
annual and daily cycles and their harmonics. Supplementary
material supplied in discussion by Baker (2010) confirmed that
the spectrum of the broadband component appears to conform to
the Von Karman model (Von Karman, 1948). Hence this paper will
describe a simulation of a correlated random variable with a
Rayleigh first-order probability distribution, and a Von Karman
spectrum. Harris (2008) also estimated the timescale of the
broadband random component by integration of its auto-
correlation and found a value T¼22.15 h. Accordingly, in what
follows, this value will be used for T when a numerical value is
required.

2. Theoretical development

The starting point is a well-known result from probability
theory. If x(t) and y(t) are identically distributed independent
random variables, each having a Normal probability distribution
with zero mean and unit standard deviation, then the joint
probability density of x and y is given by:

pðx; yÞdxdy¼ 1
2π

exp �x2þy2

2

� �
dxdy ð2:1Þ

If x and y are regarded as Cartesian co-ordinates in a plane
relative to some origin, it follows that the resultant r(t) has a
probability density:

pðrÞdr¼ rexp
�r2

2

� �
dr ð2:2Þ

That is p(r) has a Rayleigh distribution. It then follows that the
mean of r, r, and the standard deviation of r, sr, are given by:

r¼
ffiffiffiffiffiffiffiffi
π=2

p
ð2:3aÞ

sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�π=2

p
ð2:3bÞ

Suppose the variables x(t) and y(t) both have an auto-
correlation function ρ(τ) and consider pairs of values x1(t), x2(t)
and y1(t), y2(t) both separated by a time lag τ. Since x(t) and y(t) are
independent, it follows that the joint fourfold probability density
is given by:

pðx1; x2; y1; y2Þ

¼ 1
4π2ð1�ρ2Þexp

�fx21þx22þy21þy22�2ρðx1x2þy1y2Þg
2ð1�ρ2Þ

� �
ð2:4Þ

Now introduce the substitutions:

x1 ¼ r1 cos θ1; x2 ¼ r2 cos θ2; y1 ¼ r1 sin θ1; y2 ¼ r2 sin θ2 ð2:5Þ

Then the joint fourfold distribution becomes:

pðr1; r2; θ1; θ2Þ ¼
r1r2

4π2ð1�ρ2Þexp
�fr21þr22�2r1r2ρ cos ðθ1�θ2Þg

2ð1�ρ2Þ

� �

ð2:6Þ

To obtain p(r1, r2), the joint marginal distribution of r1 and r2, it
is necessary to integrate out the dependence on the angle

variables θ1 and θ2, each over the range �π to þπ. The symmetry
properties of the ranges of integration and of the trigonometric
functions allow this double integration to be reduced to:

pðr1; r2Þ ¼
r1r2

2π2ð1�ρ2Þexp
�ðr21þr22Þ
2ð1�ρ2Þ

� �
π

Z þπ

�π
exp

r1r2ρ cos φ

ð1�ρ2Þ

� �
df

ð2:7Þ

From Gradshteyn and Ryzhik (1994):
Z þπ

�π
ez cos xdx¼ 2πI0ðxÞ ð2:8Þ

where I0(x) is a modified Bessel Function of the first kind. Hence:

pðr1; r2Þ ¼
r1r2

ð1�ρ2Þexp
�ðr21þr22Þ
2ð1�ρ2Þ

� �
I0

r1r2ρ
ð1�ρ2Þ

� �
ð2:9Þ

The auto-correlation of r(t), denoted by ζ(τ) is given by:

ζðτÞ ¼ r1r2 �ðrÞ2
s2
r

¼ ð2r1r2 �πÞ
ð4�πÞ ð2:10Þ

so that the evaluation of ζ(τ) requires the evaluation of:

r1r2 ¼
Z 1

0

Z 1

0

r21r
2
2

ð1�ρ2Þexp
�ðr21þr22Þ
2ð1�ρ2Þ

� �
I0

r1r2ρ
ð1�ρ2Þ

� �
dr1dr2 ð2:11Þ

The calculation proceeds by the expansion of the Bessel
Function into its power series (Gradshteyn and Ryzhik, 1994).
Each term of the expansion then factorises into the product of an
integral in r1 and an identical integral in r2. These integrals can be
evaluated and the result is a power series in ρ2. This series can be
summed and further simplified with the aid of some identities
given by Gradshteyn and Ryzhik (1994). The final result is:

r1r2 ¼ π

2 2F1 �1
2
; �1

2
; 1; ρ2

� �
ð2:12Þ

where the 2F1 is the Gauss Hypergeometric Function. For argu-
ments ∣z∣o1 this is defined by the power series:

2F1 ða; b; c; zÞ ¼ 1þ ab
c1!

zþaðaþ1Þbðbþ1Þ
cðcþ1Þ2! z2þ… ð2:13Þ

This series expansion is a reasonably efficient means of evalu-
ating the 2F1 function in (2.12).

From (2.10) it follows that:

ζðτÞ ¼ 2F1 ð�1
2 ; �1

2 ; 1; ρ
2Þ�1

4=π�1
ð2:14Þ

As a check, putting τ¼0 in this expression and using some
further identities for the 2F1 function (Gradshteyn and Ryzhik,
1994) gives ζ(0)¼1, as it must.

3. Computing the target input auto-correlation, ρ(τ)

As already noted, the correct form for the auto-correlation of r
(t) is assumed to be the Von Karman formula, so that:

ζðτÞ ¼ 2
Γð1=3Þ

ατ

2T

� �1=3
K1=3

ατ

T

� �
ð3:1Þ

where the constant α¼√πΓ(5/6)/Γ(1⧸3)¼0.746834 (to 6DP).
Given that the data being simulated are hourly means and that

the time-scale, T, is given in hours, it follows that the values of ζ
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