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A B S T R A C T

Flaw characterization in eddy current testing usually requires to solve a non-linear inverse problem. Due to high
computational cost, Markov Chain Monte Carlo (MCMC) methods are hardly employed since often needing many
forward evaluations. However, they have good potential in dealing with complicated forward models and they do
not reduce to only providing the parameters sought. Here, we introduce a computationally-cheap surrogate
forward model into a MCMC algorithm for eddy current flaw characterization. Due to the use of a database trained
off-line, we benefit from the MCMC algorithm for getting more information and we do not suffer from the
computational burden. Numerous experiments are carried out to validate the approach. The results include not
only the estimated parameters, but also standard deviations, marginal densities and correlation coefficients be-
tween two parameters of interest.

1. Introduction

In eddy current flaw characterization, the aim is to extract informa-
tion about defects possibly found within the inspected part. This infor-
mation can usually be characterized by several parameters. As an
example, a volume crack can be described by length, depth and opening
width. Recovering them from observations is an inverse problem with a
limited set of unknown parameters, here three. According to the state of
art, analytical and statistical solution methods are proposed.

Analytical ones [4,44] address the analytical relation between pa-
rameters and measurements and try to inverse it analytically. Yet, they
are limited to special cases wherein this relation is simple enough so that
analytical inversion is suitable. Furthermore, most are very sensitive to
noise, and work only for high (SNR) situations. Statistical ones are
popular in parameter inversion because of high inversion accuracy and
robustness vs. noise. Yet, what is of the most interest to us here is their
ability of managing complicated models. As in the example above, flaw
characterization in Eddy Current Testing (ECT) is an inverse problem
usually involving a limited number of unknowns [10,16]. However, the

problem is still difficult to solve due to the complexity of the forward
model which describes the relation between flaw parameters and mea-
surements, nonlinear in most situations.

Statistical methods are usually transformed into an optimization
problem solved by a numerical optimization algorithm, as in Refs. [1,14,
16,37,47]. Due to the complexity of the problem, statistical methods
usually need to overcome two hurdles: high computational cost due to
many evaluations of the forward model, non-convex objective function
due to nonlinear parameter dependence. Gradient-based algorithms are
widely used [1,14,16,37,47]. Yet, to calculate or approximate the
gradient subject to the unknown parameters might not always be
feasible. Furthermore, they cannot solve the non-convex problem,
meaning to be blocked in a local minimum once in it.

Markov Chain Monte Carlo (MCMC) methods [24,31,45] have been
used in ECT for Bayesian analysis [19,36]. However, they are not widely
used for solving ECT inversion problems because of high computational
cost. Though developments have been made in the last two decades to
accelerate MCMC algorithms [12,17,23,25], the computational burden
remains heavy if willing to apply them directly in ECT.
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We propose a surrogate model based MCMC approach to solve the
ECT inverse problem. In this approach, a data-fitting surrogate forward
model is introduced into a classical MCMC method where only in-
terpolations are performed to approximate the forward evaluations
during a MCMC process, then helping to reduce the computational cost.
Since the employed MCMC algorithm is gradient-free and able to leave
local minima, this makes it possible to solve non-convex problems. More
importantly, by performing Bayesian analysis on MCMC results, it offers
more information than the estimated parameters, like variances of esti-
mates, correlation coefficients, and marginal posterior distributions. We
describe the forward metamodel in x 2, the MCMC inversion algorithm in
x 3, and we provide experimental validations in x 4 and x 5. An Appendix
devoted to the forward solever and meatmodel generation follows.

2. Data-fitting metamodel

A general forward model with additive Gaussian noise can be
described by

y ¼ f ðxÞ þ ε; ε � N
�
0; σ2y

�
; (1)

where x 2 ℝN , y 2 ℂM and ε are unknown parameters, observations and
noise, resp. N is the number of unknown parameters while M is the total
number of measurement points. σ2y is the noise variance of the same size
as y. f ðxÞ is the function that yields the physical relation between x and y.
Depending upon the configuration of inspection, different methods can
be used to get f ðxÞ. The Method of Moments (MoM) [9,39] is one of the
most used.

For statistical parameter inversion, thousands of forward evaluations
could be required, hence, in effect overwhelming the algorithm if we
employ MoM directly within the inversion. To overcome this problem,
data-fitting surrogate models, also called metamodels [7,21,22,30,40],
are proposed.

Ametamodel includes a database trained off-line, independently from
the inversion, and an on-line interpolator, called upon only when a

Fig. 1. Implementation of metamodel-based MCMC algorithm for inversion.

Fig. 2. Comparison between random and largest-likelihood initialization; the true parameters are located within the concave bottom of the negative-log likeli-
hood mesh.

Fig. 3. Sketch of slab flaw inspection problem in 2008 WFNDE eddy cur-
rent benchmark.

Table 1
WFNDE 2008 eddy current benchmarks.

Flaw flaw parameters

depth d length l width w

40I 0.62 (from top) 20 0.11
80I 1.24 (from top) 20 0.14
40E 0.62 (from back) 20 0.11
80E 1.24 (from back) 20 0.14
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